

STORMWATER MANAGEMENT REPORT

for PROPOSED RESIDENTIAL SUBDIVISION

'DURNESS STATION' VINEY CREEK ROAD NORTH SHEARWATER

LOT 1, 2, 3 & 4 IN DP 1154170

Prepared by
TATTERSALL LANDER
PTY LTD

Development Consultants
August 2020

CONTENTS

1.0	INTR	ODUCTION	4
2.0	BAC	GROUND INFORMATION	5
3.0	SITE	CONTEXT	6
4.0	PROF	POSED DEVELOPMENT	7
5.0	WAT	ER QUALITY TARGETS	8
6.0	CONS	STRAINTS, OPPORTUNITIES & BEST PLANNING PRACTICES	8
7.0	SOIL	AND WATER MANAGEMENT	10
8.0	INTE	GRATED WATER CYCLE MANAGEMENT	12
9.0	STOF	RMWATER MANAGEMENT - HYDROLOGY	13
10.0	STOF	RMWATER MANAGEMENT – WATER QUALITY MODEL	20
10.	1 BA	CKGROUND	20
10.	2 MU	SIC MODELLING	20
1	0.2.1	CLIMATE / RAINFALL	21
1	0.2.2	EVAPORATION	22
1	0.2.3	NODE PARAMETERS	23
1	0.2.4	EXISTING FLOW & POLLUTANT ANALYSIS	24
1	0.2.5	PROPOSED DEVELOPMENT FLOW & POLLUTANT ANALYSIS	27
1	0.2.6	COMPARISON OF POLLUTANT RESULTS	32
11.0	COST	rs	36
12.0	OPER	RATION AND MAINTENANCE PLAN	37
1:	2.1	BIOFILTERS	37
1:	2.2	DETENTION BASINS	38
1:	2.2.1	PRECINCT 1 BASIN	38
1:	2.2.2	PRECINCT 2 BASIN	38
1:	2.2.3	PRECINCT 3 BASIN	39
1:	2.3	SWALES / BUFFER STRIPS	39
13.0	CON	CLUSIONS	40
14.0	REFE	RENCES	41
AP	PEND	IX A: PROPOSED LAYOUT & DETAIL PLANS	42
AP	PEND	IX B: PROPOSED E2 LANDS REHABILITATION PLANS	43
AP	PEND	IX C: BIOFILTER MAINTENANCE TASKS	44

LIST OF FIGURES

Figure 1: Locality Diagram	4
Figure 2: Existing Catchment Diagram	6
Figure 3: Basin 1 Pre-Development Hydrograph	15
Figure 4: Basin 1 Post-Development Hydrograph	15
Figure 5: Basin 3 Pre-Development Hydrograph	16
Figure 6: Basin 3 Post-Development Hydrograph	16
Figure 7: Basin 1 Pre-Development 2D Hydrograph	17
Figure 8: Basin 1 Pre-Development 2D Peak Flow/Velocity Mapping	18
Figure 9: Basin 3 Pre-Development 2D Hydrograph	18
Figure 10: Basin 3 Pre-Development 2D Peak Flow/Velocity Mapping	19
Figure 11: Adopted Rainfall-Runoff MUSIC Parameters	23
Figure 12: Existing State MUSIC Model	25
Figure 13: Precinct 2 / 3 Detailed Catchment Breakdown	29
Figure 14: Precinct 1 Proposed Development MUSIC Model	29
Figure 15: Precinct 2 Proposed Development MUSIC Model	30
Figure 16: Precinct 3 Proposed Development MUSIC Model	30
Figure 17: Basin 3 100yr maximum depths and flow velocities	35
<u>LIST OF TABLES</u>	
Table 1: Stormwater Quality Targets	8
Table 2: Hydraulic Model Summary	19
Table 3: Monthly Areal Potential Evapotranspiration Figures	22
Table 4: Adopted MUSIC Pollutant Generation Parameters	24
Table 5: Receiving Node Pre-Development Analysis	26
Table 6: Receiving Node Post-Development Analysis	31
Table 7: Comparison of Pre and Post-Development Pollutant Loads	32

1.0 INTRODUCTION

This report has been prepared to support a proposal for a fresh Development Application for the first three Precincts of the North Shearwater residential project. While mostly covering the same footprint, the current proposal consists of generally smaller 'standard' residential lots consistent with the Council LEP, and also makes other adjustments for DPI Water, RFS and MidCoast Water Services requirements.

This June 2020 revision has been updated in response to discussions with Council and the RFS, and address several design changes made as a result of these discussions.

The site of the proposed development is part of Lots 1, 2, 3 & 4 in DP 1154170 and is located off Viney Creek Road, Tea Gardens.

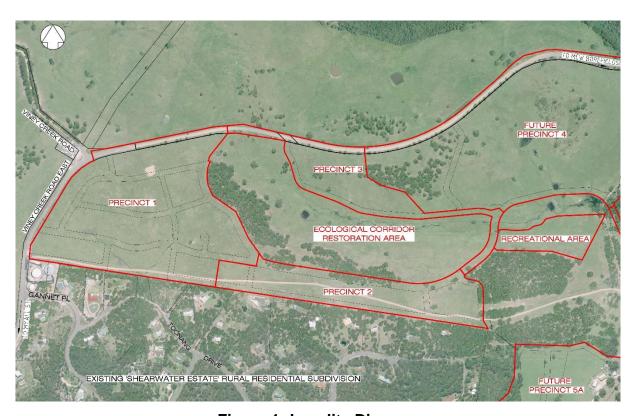


Figure 1: Locality Diagram

2.0 BACKGROUND INFORMATION

The site is currently part of a larger rural property known as Durness Station, which has a long history of agricultural grazing including cell grazing. Part of the property between Viney Creek Road and the Myall River has been slated for residential development (and environmental rehabilitation), and a rezoning process has been undertaken with Council to direct this development.

An earlier DA for the Precinct 1 area has previously been submitted and approved by Council. That proposal was deemed unviable due to a range of factors including changes to bushfire regulations, inconsistencies between the Council LEP and DCP, MidCoast Water Services servicing requirements and the low relative lot yield. An alternate layout is now proposed.

The areas of proposed development are mostly cleared, and the current DA also includes the first stage of a large area of rehabilitation and riparian offset in the E2 wildlife and riparian corridor area.

It is understood a previous water management study would have been prepared for the site for the original DA, but this has not been provided to Tattersall Lander.

3.0 SITE CONTEXT

The site is a rural property, sections of which were recently rezoned to include R2 residential and E2 environmental lands. A section of remnant RU2 lands still remains in the centre of the rezoned areas. The current landuse is as an active grazing property, employing 'cell grazing' techniques which including active fertilising and pasture improvement and controlled periodic intensive grazing.

The topography is best described as varying from very steep to undulating. The Precinct 1 area drains south into a public drainage reserve through the Shearwater rural-residential estate. Precinct 2 currently drains directly into numerous private rural-residential lots in the Shearwater Estate and then back onto the subject site before flowing to the Myall River. Precinct 3 drains into an existing gully that runs to the east through further stages of this development and on to the Myall River.

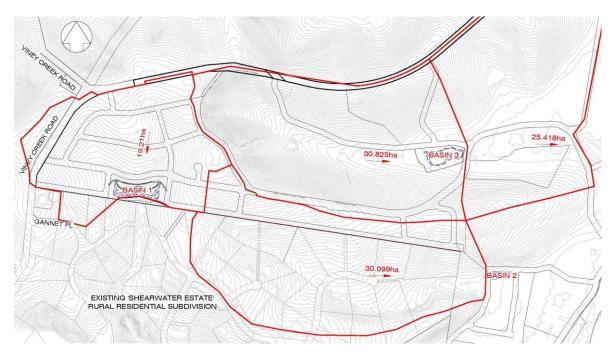


Figure 2: Existing Catchment Diagram

(Contour interval = 1 metre, contours generated from NSW Gov. Spatial Services LiDAR data)

4.0 PROPOSED DEVELOPMENT

The proposal is for the development of residential lands known as Precinct 1, Precinct 2 and Precinct 3 of the North Shearwater project. In total 226 residential lots will be created in these precincts, along with various public roads, drainage reserves, public conservation reserves and a large public recreational reserve. Precinct 1 will be constructed and released in 5 separate releases (Precincts 1A to 1E).

In Precinct 1 stormwater control is proposed via a constructed basin and biofiltration system in the central low point of that catchment, consistent with the previous DA.

Precinct 2 will be constructed as a single release. Stormwater runoff will be intercepted before it enters the adjoining Shearwater Estate properties by the southern perimeter road and diverted down into the future Precinct 5A footprint, where temporary dispersion measures will be installed (future extension during Stage 5 will see this stormwater ultimately conveyed to the Myall River). The northern portion of Precinct 2 (catchment essentially limited to the collector road and verges) will shed directly to the E2 lands. Water quality requirements will be addressed as much as possible given the significant site constraints, by the use of roadside swales, and will also be offset by landuse changes and water management devices in the E2 rehabilitation area.

Precinct 3 will also be constructed as a single release. Stormwater runoff will follow natural flowpaths into and along the E2 riparian corridor. This area of the site is similarly tightly constrained by existing slopes, riparian zones and required bushfire APZs. Water quality requirements will be addressed as much as possible by the use of roadside swales and will also be offset by landuse changes and water management devices in the E2 rehabilitation area. An online detention basin will provide both ecological habitat diversity and some detention for peak flow attenuation.

Layout and staging plans can be seen in Appendix A.

5.0 WATER QUALITY TARGETS

The Water Sensitive Design section of the Council Development Control Plan states that a water quality treatment train for this development should meet the pollution reduction targets in

Table 1 below:

Table 1: Stormwater Quality Targets

Gross Pollutants (GP)	90%	
Total Suspended Solids (TSS)	Neutral or Beneficial Effect	
Total Phosphorus (TP)	Neutral or Beneficial Effect	
Total Nitrogen (TN)	Neutral or Beneficial Effect	

6.0 CONSTRAINTS, OPPORTUNITIES & BEST PLANNING PRACTICES

Best-planning practices have been considered throughout the planning process. The steep and rocky nature of the existing site, bushfire APZ restrictions and Riparian Zones under the Water Management Act combine to present some significant challenges to WSD implementation.

Within Precinct 1, the current proposal is mostly consistent with the previously approved DA proposal, but some modification/improvements have been introduced. These improvements include provision of high flow bypasses to the biofiltration measures, provision of roadside swales (where appropriate) and significant increase in active rehabilitation of the E2 lands. The 'token' street scale biofiltration measures in the original DA have been removed, as their previous configuration presented significant constraints to provision of sewer services, and they offered no real benefit as any water treated by them was then being 'shandied' in with untreated flows and then re-treated in the larger downstream biofiltration measures. Gross Pollutant Traps were also removed at Council's request.

In this August 2020 revision of the proposal, roadside swales have also been removed from Precinct 1 and some locations in Precincts 2 and 3 at the request of

Council, where grades >10% were considered too steep from a maintenance perspective.

7.0 SOIL AND WATER MANAGEMENT

A critical time for increase pollutant loads is during construction, and with this in mind, current practice recommends guidelines from Landcom's "Blue Book". Erosion and sediment control measures should be designed and specified in accordance with the "Blue Book" guidelines, and to Council satisfaction, and be inspected and maintained during the construction phase. This will assist in ensuring adherence to pollutant prevention objectives, particularly the removal of suspended solids (sediment).

As each construction stage will be in excess of 2,500sq.m, it is expected that a detailed Soil and Water Management Plan will need to be prepared for each construction stage prior to release of the Construction Certificate. This would typically include calculations of likely soil loss during construction, instructions on preferred construction sequence and limiting land disturbance, and calculations for the provision and sizing of a temporary sedimentation basin to cover the period of civil works. On this site, the permanent detention basins would appear to be the logical place to also site the temporary construction basins.

The five-staged release of Precinct 1 presents some challenges here, with one basin location being needed for sediment control and progressively for water quality and detention purposes. Additionally, finalisation of bio-filtration devices should ideally be deferred until after the majority of the catchment is 'mature' – i.e. at least 80% of dwellings are completed. This presents an opportunity where the biofiltration area may be temporarily utilised as a construction sediment basin.

As such, delayed final commissioning of the permanent basin may be one practical solution, pending discussions/agreement with Council on some environmental, engineering and legal issues. These issues may include ownership and maintenance of a structure used for both temporary private sediment control and public peak flow control, deferment of water quality treatment benefits, engineering design of temporary works interacting with permanent infrastructure etc.

Physically, a construction basin within the proposed biofilter area would be achieved by shaping the biofilter area, including excavating to the ultimate drainage layer base, and that void being used as a construction sediment basin. The drainage layers, filter layer and vegetation works can be finalised with subsequent Precinct 2 or 3

construction works (depending on Precinct 1 housing progression), or installed by Council using a developer bond if the timing does not line up with the construction of one of these stages.

The adjacent detention basin area should be constructed to its final format in the first stage of construction to provide the necessary flow attenuation to protect downstream properties from larger storm events.

Basins for Precinct 2 and 3 are isolated to those precincts, so there is no issue with using the basin locations initially for construction purposes before finalising in their long term format, other than the fact the basin will only be available for sediment control for the civil works process, not the subsequent dwelling construction process. The Precinct 3 basin will ultimately be an online basin in a catchment that includes all the upstream E2 restoration corridor, but will need to be designed in an offline configuration during construction, to minimise size and chemical treatment costs.

It is noted that where benched lots have been provided, they have been designed with level building pads (rather than nominal sloping grades). While this may make the initial building site boggier if wet conditions are encountered during dwelling construction, it also removes any need for additional earthworks by the builders, coordinates retaining wall construction and will further help reduce sediment transportation due to the flat grades.

8.0 INTEGRATED WATER CYCLE MANAGEMENT

All created lots will be serviced with reticulated water and sewer from the MidCoast Water Services network. MidCoast Water Services have previously investigated recycled water reticulation and determined it was not feasible in the Tea Gardens area.

In line with BASIX and WSD principles, runoff from future dwelling roof areas is to be directed into rainwater tanks for reuse within the dwelling (toilet and laundry) and external use.

9.0 STORMWATER MANAGEMENT - HYDROLOGY

The nature of urban development is that it significantly increases the amount of impervious surface in a catchment, which in turn can decrease runoff times and create higher peak flow rates. It is important with new developments that measures are put in place to prevent increases in runoff from the site and resulting downstream flash flooding.

The overall North Shearwater development has two distinct catchments. Precinct 1 drains south into a public reserve in Shearwater Estate which in turn flows down across Toonang Drive, and the future Parry's Cove (formerly Riverside) residential development. The Toonang Drive culverts have known capacity issues however Council has recently upgraded the main culvert to attempt to mitigate the Toonang Road flooding issues. Managing peak discharges in this catchment is important to ensure there are no negative impacts on these downstream properties and structures. The proposed Precinct 1 basin is similar to the basin proposed in the original DA, although it is now slightly larger to reflect the increased densities now proposed and has been modified to act as a wet basin rather than a dry basin, removing the need for regular mowing maintenance and also providing additional habitat variety. The proposed permanent water depth ranges from 0.5m-1.0m deep, and a maximum batter below and near the waterline is 1:6. The previously proposed Gross Pollutant Traps have been replaced by shallow sediment forebays based on Lake Macquarie Council's standard drawing EGSD-422 to provide easier maintenance by Council's existing local works crews. A low flow outlet has been included to help reduce the discharge rate of smaller regular events, making them less peaky and providing a more stable riparian environment downstream.

Precincts 2 and 3 will ultimately drain into the Myall River in combination with Precincts 4 and 5. With no downstream properties between these lands and the river, and in recognition of the greatly delayed flood peak in the Myall River system, peak flow attenuation is not necessary for these precincts in relation to the impacts on other properties. None-the-less, the Precinct 3 basin has been designed with a detention capacity component to ensure local flood impacts are minimised internally on the future Precinct 4 residential lands and downstream riparian corridor, and also to allow appropriate sizing of the collector road culvert to ensure public safety in the 100yr

event. Again, a low flow outlet has been included to try and replicate a more natural regular storm flow regime.

The Precinct 2 basin is a temporary structure that will be relocated in future Precinct 5 works. It is essentially a sediment trap and energy dissipater and has not been designed for peak flow attenuation.

An XP-Storm hydrological and hydraulic routing model has been prepared to quantify the effectiveness of the proposed measures. The effect of rainwater tanks has not been included in the calculations, although it is noted that some councils are now allowing some of the volume of dwelling rainwater tanks to be counted towards overall onsite detention capacities (20% in LMCC, and up to 100% in NCC).

Rainfall was simulated utilising the Laurenson Method with (ARR87) IFD data sourced from the Council. Minimal infiltrations rates were conservatively set, assuming design storm bursts are occurring following earlier rainfall events. A range of storms were run to determine the critical duration for each catchment (generally found to be either the 1hr or 2hr storm). Sample discharge hydrographs are shown on the following pages.

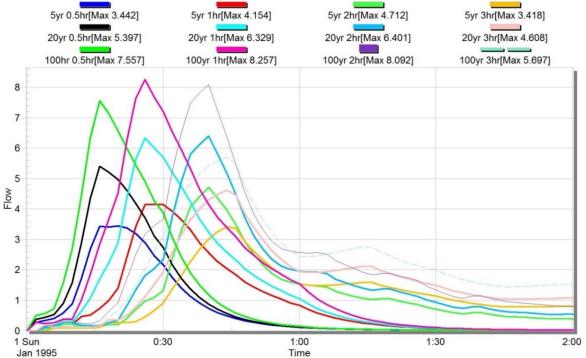


Figure 3: Basin 1 Pre-Development Hydrograph

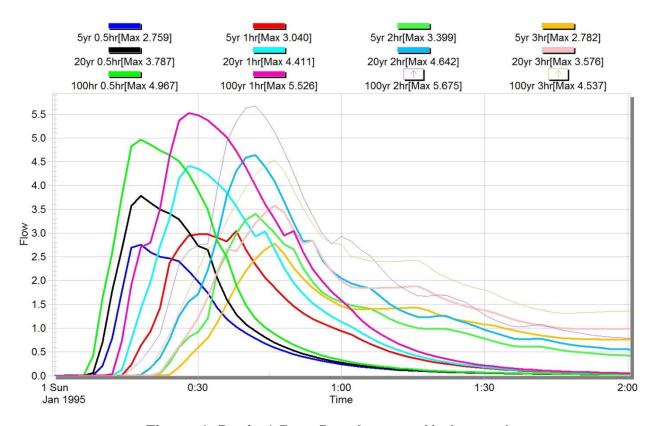


Figure 4: Basin 1 Post-Development Hydrograph

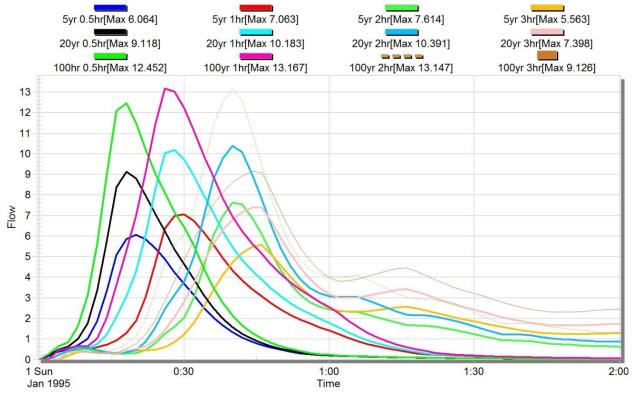


Figure 5: Basin 3 Pre-Development Hydrograph

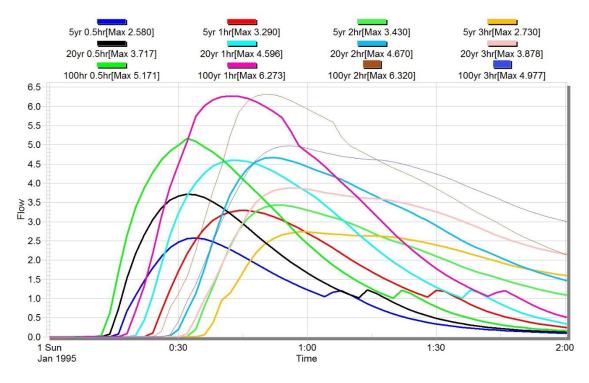


Figure 6: Basin 3 Post-Development Hydrograph

As a check, a simplified 2D rainfall-on-grid model was set up and run to confirm the 1D model results being achieved. This type of model has the advantage that catchment extents, slopes and flow paths do not need to be approximated by the modeller, but rather are determined organically from the DTM. The check model included a 2m grid size, DTM from LiDAR data and was run for a 100yr 2hr storm event. The resulting peak Precinct 1 and Precinct 3 hydrographs and Depth/Velocity outputs can be seen below. They provide a close comparison of the equivalent 1D results considering the completely different modelling methods, and provide some reassurance of the 1D results.

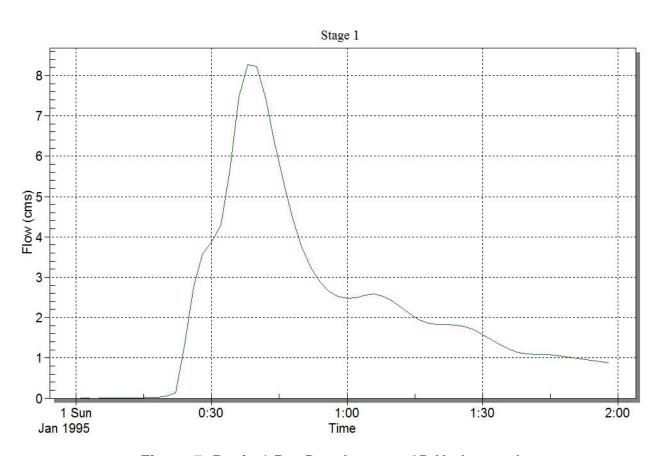


Figure 7: Basin 1 Pre-Development 2D Hydrograph

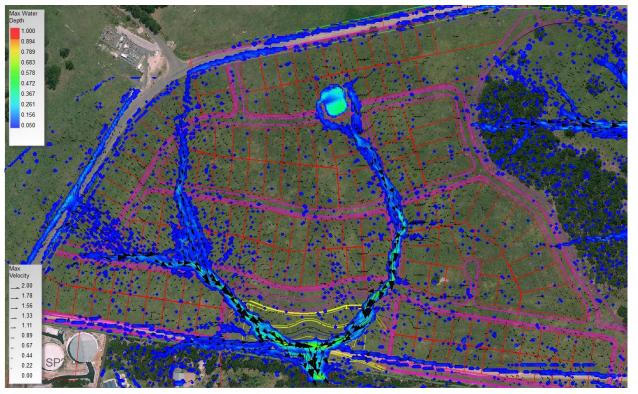


Figure 8: Basin 1 Pre-Development 2D Peak Flow/Velocity Mapping

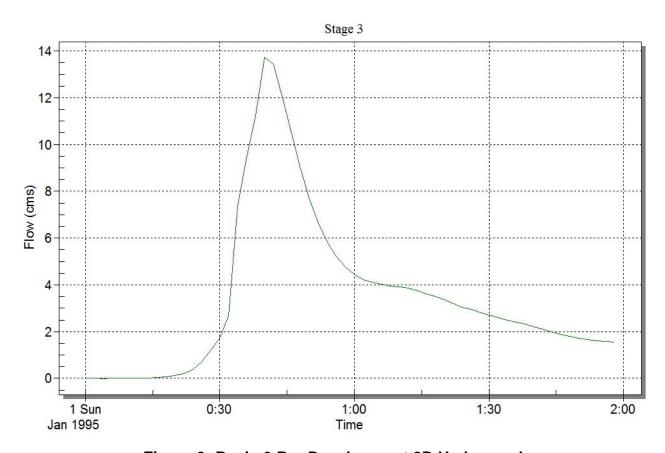


Figure 9: Basin 3 Pre-Development 2D Hydrograph

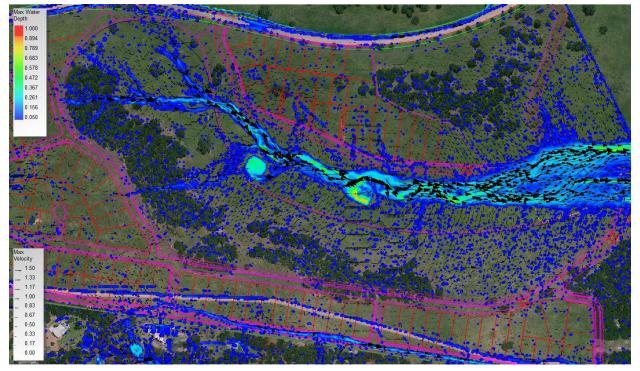


Figure 10: Basin 3 Pre-Development 2D Peak Flow/Velocity Mapping

A brief summary of each catchment can be seen below in Table 4, illustrating that the 5yr, 20yr and 100yr post-development peak discharge rates are lower than the existing site conditions, ensuring no negative downstream flooding impact as a result of the proposed development.

Table 2: Hydraulic Model Summary

Catchment	Precinct 1	Precinct 3
Catchment Area (ha)	19.21	30.825
Pre-developed Imperviousness (%)	10%	10%
Post-developed Imperviousness (%)	60%	60%
Provided Basin Total Detention	4,750	8,850
Volume (m ³)	1,700	0,000
5yr Pre / Post Development	4.71 / 3.40	7.61 / 3.43
Discharge (m³/s)	1.7 1 7 6.16	7.017 0.10
20yr Pre / Post Development	6.40 / 4.64	10.39 / 4.67
Discharge (m³/s)	0.107 1.01	10.00 / 1.07
100yr Pre/Post Development	8.26 / 5.68	13.16 / 6.32
Discharge (m ³ /s)	3.23 / 3.33	10.107 0.02

10.0 STORMWATER MANAGEMENT – WATER QUALITY MODEL

10.1 BACKGROUND

The quality of stormwater runoff generated by a development site is important to ensure the preservation of the downstream environments. Generally, an increased proportion of impervious area associated with development will lead to a subsequent increase in the quantities of suspended solids, phosphorus and nitrogen entering potential storm water runoff if treatment measures are not put in place. The aim of this study was to determine what measures need to be undertaken as part of this development to meet the water quality objectives set out in

Table 1 in Section 5 of this report.

10.2 MUSIC MODELLING

MUSIC is the Model for Urban Stormwater Improvement Conceptualisation, developed by the Cooperative Research Centre for Catchment Hydrology. MUSIC provides the ability to model both quality and quantity of runoff generated by catchments. Therefore MUSIC can simulate annual stormwater volumes, and expected annual pollutant loadings.

MUSIC is designed to model stormwater runoff systems in urban catchments. It is used to simulate a range of temporal and spatial scales. Catchment modelling can be performed for areas up to 100 km², with times steps from 6 minutes to 24 hours to match the range of spatial scale. This enables long term modelling of continuous historical rainfall data from pluviograph sources, and reflects the ability to account for temporal variation in data for an annual rainfall series directly.

MUSIC also has the ability to model a number of treatment devices, and measure their effectiveness in terms of the quantity and quality of runoff downstream. This allows determination of the degree of reduction in annual pollutant loadings.

It is important to note that the MUSIC simulation relies heavily on input variables and it is usually recommended that MUSIC models be calibrated to local conditions wherever possible. When calibration is not possible default values can be used, or variables can be sourced from values recommended for stormwater modelling in the NSW MUSIC modelling Guidelines, which are in turn sourced from a technical report

prepared for the DECC by the Co-operative Research Centre titled "Stormwater Flow and Quality, and the Effectiveness of Non-Proprietary Stormwater Treatment Measures" (Fletcher et al, 2004).

10.2.1 CLIMATE / RAINFALL

To accurately model a site of this size, continuous rainfall record spanning at least five years with a six minute timestep is required. Rainfall data was obtained from the Bureau of Meteorology in the form of a historic pluviograph record from the Williamstown rainfall gauge. It is situated approximately 34km from the site and is of similar elevation and temporal pattern.

The rainfall record was analysed, and the ten years of data between the dates of 1/1/1997 and 31/12/2006 was chosen. This was based on advice received for a peer-reviewed MUSIC model carried out by Tattersall Lander on another development in the Tea Gardens area. This data produced a mean annual rainfall of 1131mm. It was noted that the long term average rainfall (obtained from the Bureau of Meteorology) for Nelson Bay (approximately 13km from the site) is 1348mm. The ten year pluviograph data was scaled appropriately to bring the mean annual rainfall in line with this long term average (again based on advice received for the previous model). For the purpose of this report, all rainfall events in the nominated ten year period have been modelled.

10.2.2 EVAPORATION

To accurately model the outcome of water quality treatment measures, monthly potential evapotranspiration (PET) data is required. Monthly average areal potential evapotranspiration values were read from maps in the 'Climate Atlas of Australia, Evapotranspiration' (BoM, 2001), and are displayed below in Table 3:

Table 3: Monthly Areal Potential Evapotranspiration Figures

Month	Potential Evapotranspiration (mm)
January	180
February	135
March	135
April	90
May	70
June	50
July	50
August	70
September	95
October	135
November	150
December	175
Total	1335

10.2.3 NODE PARAMETERS

The MUSIC model was used to simulate the pollutant export generated during a ten year period of average rainfall. Geotechnical investigations indicate that the predominant soil types on site are Silty Clays and Clays. Rainfall-runoff parameters for Clay soils were adopted from Section 3.6.4.3 of the Draft NSW MUSIC Modelling Guidelines (2010) and typical pollutant concentrations derived from Fletcher et al. The adopted parameters can be seen in Figure 11 and Table 4 below.

Note that a Rainfall Threshold of 1.50 mm/day was adopted for the "Sealed Road" node and 0.30 mm/day was adopted for the "Roof" node per Table 3.6 in the Draft NSW MUSIC Modelling Guidelines (2010). A Rainfall Threshold of 1.00 mm/day adopted for all other nodes.

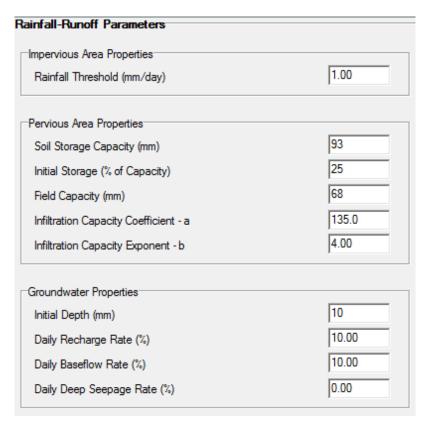


Figure 11: Adopted Rainfall-Runoff MUSIC Parameters

Table 4: Adopted MUSIC Pollutant Generation Parameters

	Agricultural	Rural	Residential	Roof	Road
Baseflow TSS Mean (mg/L)	20	14	16	-	16
Stormflow TSS Mean (mg/L)	140	90	140	20	270
Baseflow TP Mean (mg/L)	0.09	0.06	0.14	-	0.14
Stormflow TP Mean (mg/L)	0.6	0.22	0.25	0.13	0.5
Baseflow TN Mean (mg/L)	1.1	0.9	1.3	-	1.3
Stormflow TN Mean (mg/L)	3	2	2	2	2.2

10.2.4 EXISTING FLOW & POLLUTANT ANALYSIS

The overall development has two distinct catchments – Precinct 1 drains south into a public reserve in Shearwater Estate, while Precincts 2 and 3 will ultimately drain into the Myall River in combination with Precincts 4 and 5.

The existing site was modelled to simulate the current pollutant loads from the site. Cleared areas of the site were modelled as an 'Agricultural' node to reflect the cleared and open nature of the site and in acknowledgement of the active commercial grazing operations. Treed areas within the development footprint were modelled as 'Rural', as cattle grazing still occurs in these areas which would result in increased pollutant loads compared to an idealised 'Forest'.

* Note: It is acknowledged that the use of an Agricultural landuse is a position Council is not necessarily comfortable with. In this case the site is farmed fairly intensively as a grazing property, and the following is offered as justification of the adopted position.

As previously discussed with Council, the source of pollutant-generating parameters for MUSIC modelling is *Stormwater Flow and Quality, and the Effectiveness of Non-Proprietary Stormwater Treatment Measures*, 2004, by Fletcher et al. This document does not provide definitions of what it defines as Agricultural and Rural (or any other) landuses. Further, the *Draft NSW MUSIC Modelling Guidelines*, 2010 by BMT WBM allocate an Agricultural landuse to grazing lands (other than horses), and the 2015 NSW MUSIC Modelling Guidelines

recommend an Agricultural landuse to RU2 lands (which is the former zoning of this site, and the nature of current site activities is still consistent with this).

Strong precedence also exists for this position - MUSIC modelling done by Martens & Associates (and peer reviewed by BMT WBM and the PAC expert panel) for the SEPP Major Projects application on the adjacent Riverside project applied agricultural landuse to the grazing areas on that site. Other Tattersall Lander reports peer reviewed by BMT WBM have also confirmed this approach as using the best information currently available.

In the context of this water quality assessment however, the real significance is to reflect the change of landuse because of the large areas of rehabilitated lands. Post-development areas of urban development will increase pollutant loads and the method for representing this post-development landuse is generally accepted. The significant distinction with this project is the conversion of large sections of farming lands back to a 'natural' state via active rehabilitation (16.7ha area in this DA, and more in future precincts). It is appropriate to reflect the improvement this will have on runoff water quality to offset some of the increases from the urban areas. This is achieved in this report by using an 'Agricultural' pre-developed landuse, and a 'Rural' post-developed landuse. Similar results would have been seen if a 'Rural' pre-developed landuse and a 'Forest' post-developed landuse had been used, but the NSW MUSIC modelling guidelines do not allow revegetated areas to be modelled as Forest, as a conservative assumption that the benefits will take some time to be fully realised as the rehabilitated areas mature to forest, whereas the conversion of residential lands to a mature 'urban' catchment may happen much faster.

Figure 12: Existing State MUSIC Model

Table 5: Receiving Node Pre-Development Analysis

	1	
	TSS (kg/yr)	17,500
Precinct 1	TP (kg/yr)	68.7
	TN (kg/yr)	330
	GP (kg/yr)	581
	TSS (kg/yr)	6,910
Precinct 2	TP (kg/yr)	28.2
(R2 footprint only*)	TN (kg/yr)	137
J,	GP (kg/yr	207
	TSS (kg/yr)	3,620
Precinct 3	TP (kg/yr)	14.6
(R2 footprint only*)	TN (kg/yr)	71.5
	GP (kg/yr	0

^{*} Note – despite each overall drainage catchment including surrounding adjacent lands, Council has requested analysis to be done of the proposed R2 development land only, so no water quality benefits as a result of the land use change and restoration of the E2 lands are included in these results.

10.2.5 PROPOSED DEVELOPMENT FLOW & POLLUTANT ANALYSIS

The proposed development was modelled to determine expected pollutant loads and the effectiveness of the proposed water treatment measures. The catchment was broken up into different areas depending on the surface type, including;

- Roofs areas (assumed at 300sq.m per lot), and modelled as "Roof" nodes with 100% impervious area;
- Drainage reserve (Stage 1) modelled as "Rural"
- All road areas (measured directly off design plans) were modelled as "Sealed Road" nodes with 100% impervious area;
- Remaining urban pervious area (reserves, road verges, residential yards etc) were modelled as residential nodes with 10% DCIA to account for any additional sheds, paths, paved courtyards etc that may be connected to site drainage;
- E2 restoration lands, including retained vegetation and remediation areas were modelled as a separate "Rural" node.

Modelled treatment nodes include:

Precinct 1;

- Rainwater tanks, average size 3kl. Captured water from these tanks has been modelled for reuse in toilet, laundry and external uses only. Tank water reuse rates were adopted for a dwelling with 3 occupants from Table 3-12 in the 2010 Draft NSW Music Modelling Guidelines an internal water reuse rate of 0.36kL/day/dwelling and external reuse rate of 112kL/yr/dwelling. With each lot provided a legal drainage point at the lowest point on the site, it has been assumed that 100% of the roof areas will be connected to the tanks,
- Biofiltration measures have been incorporated into the main basin in Precinct 1. Features include a 0.35m average detention depth, 0.4m filter depth, 1405sq.m filter area and sediment forebay/energy dissipater/high flow bypass arrangement,
 - Note Roadside swales previously proposed have been removed at Council request, as some grades exceeded 5%. It is debatable whether swales at >5% offer zero water quality benefit, but with the proposed biofilter providing sufficient treatment, additional WSD devices were considered an unnecessary

maintenance burden and have been replaced by hard engineering concrete kerbs and pipes.

Precinct 2:

- Rainwater tanks per Precinct 1,
- Roadside swales on all roads <10% grade, 200mm deep with 1m base width. The design includes regular (30m spacing) inlet pits to segment the swales into shorter sections connected to the parallel pipe drainage network i.e. the swales are for treatment only, rather than flow conveyance. Swales were modelled at half the pit spacing (15m), and a calculated equivalent width to allow them to be grouped together for each catchment. It is noted that swales are included in the design up to a maximum 10% slope with approval from Council Engineering, who confirm that this should not be an ongoing maintenance issue. However, all swales over 5% slope (approximately half the swales in this stage) have been excluded from the MUSIC modelling on Council Natural Systems instruction that they will not accept MUSIC results which show that a swale can provide treatment beyond the 5% threshold.

Precinct 3;

- Rainwater tanks per Precinct 1,
- Roadside swales on southern side of southern perimeter road <10% grade, 200mm deep, with 1m base width. The swales will have regular (30m spacing) bunded check dams to segment the swales into shorter sections and provide regular minor discharges into the adjacent E2 lands. Swales were modelled at half the check dam spacing (15m), and a calculated equivalent width to allow them to be grouped together for each catchment.

Figure 13: Precinct 2/3 Detailed Catchment Breakdown

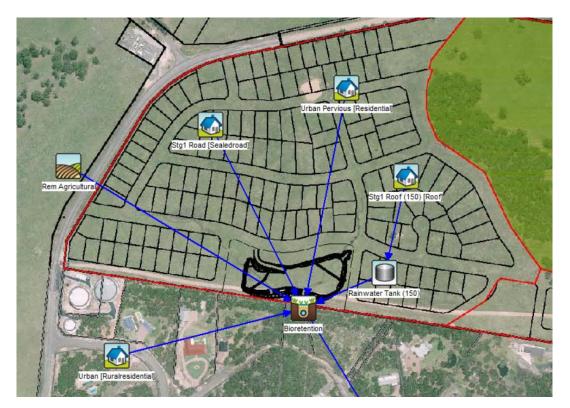


Figure 14: Precinct 1 Proposed Development MUSIC Model

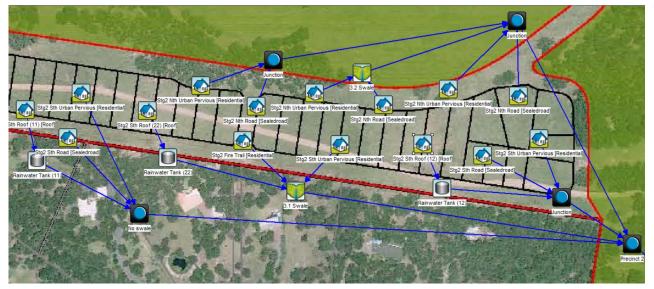


Figure 15: Precinct 2 Proposed Development MUSIC Model

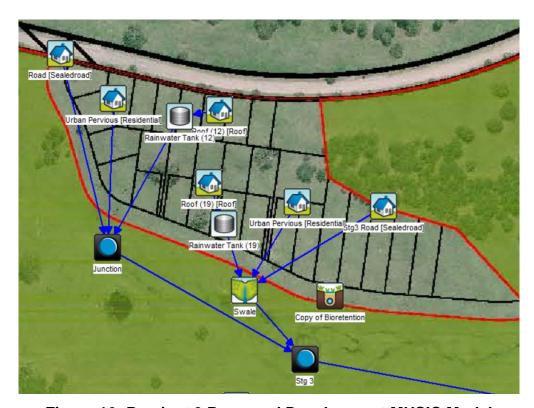


Figure 16: Precinct 3 Proposed Development MUSIC Model

An analysis of the Post-Development Receiving Node reveals the following:

Table 6: Receiving Node Post-Development Analysis

	TSS (kg/yr)	4,850
Dropinot 1	TP (kg/yr)	18.1
Precinct 1	TN (kg/yr)	179
	GP (kg/yr)	35.4
	TSS (kg/yr)	7,870
Precinct 2	TP (kg/yr)	16.0
(R2 footprint only)	TN (kg/yr)	119
J,	GP (kg/yr	447
	TSS (kg/yr)	2,890
Precinct 3	TP (kg/yr)	6.98
(R2 footprint only)	TN (kg/yr)	65.0
J,	GP (kg/yr	140

10.2.6 COMPARISON OF POLLUTANT RESULTS

Pre and post development pollutant loads are compared in the table below to ensure that the Stormwater Quality Targets have been met.

Table 7: Comparison of Pre- and Post-Development Pollutant Loads

		Pre-Developed	Post-Developed	NoBE Compliant
	TSS (kg/yr)	17,500	4,850	Yes
Precinct 1	TP (kg/yr)	68.7	18.1	Yes
Precinct	TN (kg/yr)	330	179	Yes
	GP (kg/yr)	581	35.4	Yes
Precinct 2	TSS (kg/yr)	6,910	7,870	No
(R2	TP (kg/yr)	28.2	16.0	Yes
footprint	TN (kg/yr)	137	119	Yes
only)	GP (kg/yr	207	447	No
Precinct 3	TSS (kg/yr)	3,620	2,890	Yes
(R2	TP (kg/yr)	14.6	6.98	Yes
footprint	TN (kg/yr)	71.5	65.0	Yes
only)	GP (kg/yr	0	140	No

^{*} NoBE = Neutral or Beneficial Effect

Discussion;

This is an unusual project, where the development areas are perched on steep lands above a large environmental / drainage corridor zoned for environmental use and requiring significant rehabilitation. There are numerous additional works being proposed within this E2 corridor that will provide additional water quality benefits, but are difficult to quantify accurately within the structure of the DCP and the MUSIC modelling guidelines and so are not represented in the results listed above. They will, however, provide an additional treatment effect, which should more than make up the shortcomings of the in-precinct measures.

The proposed rehabilitation plan shown in Appendix B has the support of Council's ecologist and is considered a significantly better ecological outcome. Additional unquantified water quality improvements would also occur as a result;

• Additional reforestation works - Under the planning agreement from the original rezoning, restoration of the E2 lands from the current pasture grasses was limited to not much more than simply fencing off the area and allowing natural revegetation to occur. It is considered this will result in a poor end outcome. The land has been grazed for so long there is negligible native seedbank left and natural regeneration would likely be a failed process, more likely to create a weed infested area that would then disperse seeds to surroundings lands and downstream environments. Evidence of this can be seen onsite in the areas previously fenced out and planted in coordination with Council along sections of creek line – while the individual plantings have generally performed well, the understory is still complete kikuyu/weed coverage and no supplementary 'natural' regeneration has occurred at all.

Additional to the dedication of these significant land areas to Council (over 16ha in this current DA, and further dedications in future DAs), the current proposal is offering something significantly more – large scale active plantings, with 30 separate species and including upper, middle and lower stratum species to create the complete forest structure. Some species have also been selected specifically to create preferred koala habitat.

In addition to the improved ecological outcome, it is considered that the proposed active replanting / reforestation will provide an additional water quality benefit compared to the minimum required under the planning agreement.

- Stream bank stabilisation Additional bank restoration works are proposed to stabilise the existing creek and to repair damaged areas that are currently scouring and contributing to downstream pollution,
- Contour banks The aim of the contour banks is to hold more water up on the hillslope and encourage better reforestation outcomes, as well as slow runoff rates to reduce the existing creek bank erosion issues. The contour banks are essentially swales holding back the runoff and allowing absorption of nutrients by the vegetation, as well as the dual effect of reducing runoff velocities allowing sediment to drop out on the hillside and reducing new erosion scour potential.
- Perimeter road swales > 5% At Council's instruction, all swales > 5% slope have been excluded from the MUSIC modelling. Council's position means that while a swale at 5% may remove, say, 75% of TSS, that changes to 0% removal at 5.1%. As such, effects of several long sections of vegetated swale (310m @ 5.8% and 140m @ 6%) have not been included in the reported results. It is expected that these sections of swale will provide some additional unquantified treatment value.
- Perimeter road vegetated buffers Where grades are considered too steep (>10%), swales have been replaced with rock lined, lomandra planted shoulders.
 While not modelled in MUSIC due to lack of guidance on applicable slopes, it is expected these vegetated shoulders will provide some additional unquantified treatment value.
- Basin 3 Basin 3 has been included in the design as a detention structure and from an ecological viewpoint to provide some variety of habitat in the E2 corridor. It will actually also provide many of the benefits of a constructed wetland, but because it is online with no high-flow bypass, and because it is accepting residential flows after they have been filtered through the E2 catchment, it is not something that can be accurately modelled in MUSIC. Additionally, DPI water will also not approve a water quality structure in the Riparian Zone, but they have approved this basin as a detention structure.

Despite these issues, the basin will act essentially as a constructed wetland and will provide additional water quality benefits that are not included in the MUSIC modelling results reported above.

Note - Re-suspension is not considered a significant issue because in the chosen position in the valley the grades have actually flattened out significantly, and the design of the outlet actually means that the peak 100 year flow velocities are around 0.5m/s across the basin (and even lower near the outlet), as illustrated below.

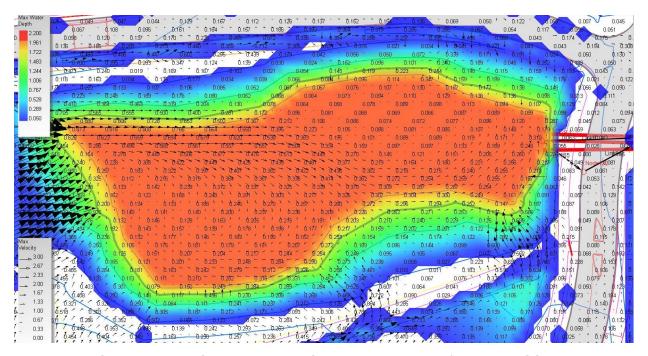


Figure 17: Basin 3 100yr maximum depths and flow velocities

Note - Additional Precinct 2 Raingarden Option - The possibility of including an additional raingarden in the lower section of the E2 corridor (adjacent to Basin 3) was discussed with Council staff, as the only realistic option to try to provide additional treatment on the site. Detailed investigation shows that this would only end up treating 0.707ha of additional lands (9% of the Precinct 2 catchment), as shown in Figure 12. The pros and cons of this option were discussed with Council staff, and it was ultimately advised that should not be pursued as there would be limited gains relative to the additional upfront and ongoing maintenance costs.

Note - Additional On-Lot Biofilter Option – There are sections of Precincts 2 and 3 that will not receive any treatment, due to the various constraints of the site. While the impact of this is generally offset by treatment of other areas, the possibility of including additional on-lot biofiltration for these otherwise untreated lots was discussed with Council staff and concluded that it should not be pursued as there would be limited gains relative to the upfront costs and compliance issues related to ongoing private maintenance.

11.0 **COSTS**

All stormwater infrastructure will be installed at the developer's expense and will be handed over to Council as public assets.

Is it expected that the finalisation of the biofiltration component of the basin in Precinct 1 will be deferred until 80% of the housing construction in the catchment has been completed. Council may wish to hold a bond for these works to ensure all finalisation and establishment costs are borne by the developer and available at the appropriate time.

Council have previously confirmed that they believe adequately sized and designed biofiltration basins are the most cost-effective method for achieving adequate water quality treatment of urban runoff. Council are now in ownership of numerous biofiltration assets and would have a reasonable understanding of the typical ongoing maintenance costs of operating these assets in local conditions. As such, detailed assessment of ongoing maintenance costs has not been prepared as it would not provide better information than what Council already has.

While some concerns have been raised about the cost of maintaining the swale and buffer sections of vegetation around the E2 lands, various alternative treatment options were discussed with various sections of Council (meeting at Council's Forster office 9/3/2020) and it was concluded that the adopted approach provides the best overall maintenance cost outcome when balanced with the costs associated with the adjacent E2 reserve.

12.0 OPERATION AND MAINTENANCE PLAN

12.1 BIOFILTERS

The biofilter systems are installed in a public drainage reserve and it is expected that all maintenance tasks on this system would fall under the general works routinely conducted by Council maintenance staff. Council are in possession of numerous biofilter assets of similar design and should have suitably skilled and educated staff to inspect and maintain the system without further instruction. Their experience in maintaining these assets within the local environmental conditions would generally take precedence over generic guidelines otherwise available.

As a general comment, regular maintenance is required to ensure water treatment measures continue to operate in an effective way. These tasks should be performed every three months or after heavy storm events, and can be done as part of regular maintenance by Council maintenance staff.

The maintenance schedule in Appendix C has been prepared as a typical template to direct maintenance staff undertaking routine maintenance and is based on Raingardens and Bioretention Tree Pits Maintenance Plan Example, prepared by the Facility for Advancing Water Biofiltration, Monash University. Relevant sections have been reproduced and/or modified for the specific site conditions. However, Council most probably already have adequately trained and skilled staff and settled biofiltration maintenance regimes and should defer to these.

The biofilter has been designed with two shallow concrete sediment forebays to provide scour protection to the biofilter. Low flows are captured in the structure and distributed into the biofilter through a series of slots cut into the integral kerbing, while high flows should bypass the forebay and flow straight into the detention basin. These forebays will require periodic inspection and cleaning. Access has been designed to allow backhoe entrance for this purpose. These forebays are designed to contain up to two years average sediment deposition. It is recommended that this be inspected every six months and after major rainfall events, and cleaned as necessary. This may need to be more frequent in the initial stages following subdivision release, depending on the pace of dwelling construction. If higher than expected sedimentation has

occurred, investigation into the upstream catchment should be undertaken to try to determine the source of the sediment.

All biofilter maintenance activities will need to commence as soon as biofilters are planted and brought online and continue for the life of the development.

Note: On top of the cleaning as described above, the sediment forebays are a specific feature that needs to be monitored and reviewed to determine if they are performing as designed. An inspection from a suitably qualified person should be undertaken following and, if possible, during regular rainfall events in the first year of operation. If too much water is bypassing the biofilters, water is not distributing evenly through the outlets or too much sediment is entering the biofilters, minor remedial design changes may be able to be made to correct these issues.

12.2 DETENTION BASINS

12.2.1 PRECINCT 1 BASIN

The Precinct 1 basin has been designed with two shallow sediment forebays that will require periodic inspection and cleaning as detailed above.

Basin discharges are controlled by a low-flow orifice outlet from the basin (protected by a maxi-mesh debris screen), a grated outlet pit, an outlet headwall and finally a reinforced turf spillway. It is expected all these outlets will be low-maintenance (to a point), but visual inspection and potential manual clearing of any built-up debris from any of the outlet structures should be undertaken in conjunction with the above-mentioned sediment forebay inspections.

12.2.2 PRECINCT 2 BASIN

The Precinct 2 basin is a 'temporary' basin that will be relocated and incorporated into the future Precinct 5 design. It is designed essentially as a coarse sediment collection device, and there will be adequate storage volume below the permanent water level to store up to ten years of accumulated sediment. If Precinct 5

construction has not commenced by this time, mechanical cleaning out may be required to reinstate capacity. A concrete service road has been provided for this purpose. Inspection is recommended annually and after large rainfall events.

12.2.3 PRECINCT 3 BASIN

The Precinct 3 basin is online on a second order stream that includes the E2 restoration area. Once the catchment is mature and stabilised, minimal sedimentation in the basin is expected, and a storage volume in excess of ten years of accumulated sediment will be provided below the permanent water level. Inspection annually and after large rainfall events is recommended, and periodic cleaning out may be required (via excavator with access from adjacent public roads if necessary).

Basin discharges are controlled by a low-flow orifice outlet from the basin (protected by a maxi-mesh debris screen), a grated outlet pit, and an outlet headwall. It is expected all these outlets will be low-maintenance (to a point), but visual inspection and potential manual clearing of any built-up debris from any of the outlet structures should be undertaken annually and after large rainfall events.

12.3 SWALES / BUFFER STRIPS

The swales and buffer strips adjacent to the E2 perimeter roads should be have fully established vegetation by the time they are dedicated to Council. The best protection from weed infestation will be to maintain a thick coverage of lomandra plantings. Weed growth is inevitable on this residential / environmental interface, but it is considered easier to deal with weeds in this roadside environment with easy access, rather than let the weed seeds get further into the E2 lands where access will be much more difficult. Periodic inspection and spraying will be required, at least biannually and focussed on spring and summer when weed growth can be at its highest. It is also recommended to reinstate plantings if plants die and densities are not being maintained.

13.0 CONCLUSIONS

The current development application proposes to address water quality and quantity objectives of the DCP via a combination of the following measures;

- Construction of three detention basins,
- Construction of an offline end of pipe biofiltration rain garden in Precinct 1,
- Construction of roadside swales where grades allow on perimeter roads,
- Provision of vegetated buffer strips adjacent to E2 where grades do not allow swale construction,
- Installation of a 3kL (average) rainwater tanks with all future dwellings,
- Removal of existing farming practices and active rehabilitation of significant areas of rezoned E2 land, including significant replanting efforts and large scale contour banks.

It is expected that the development will have a positive overall impact on both the stormwater pollutant levels and peak flowrates leaving the site, compared to the existing situation. From a stormwater quality and quantity perspective, approval is recommended.

14.0 REFERENCES

Draft NSW MUSIC Modelling Guidelines, 2010, BMT WBM

Music Version 5.0 User Manual, 2011, eWater

Policy 11: Land Development Guidelines, Section 13 Water Sensitive Urban Design, 2007, Gold Coast Council

Stormwater Flow and Quality, and the Effectiveness of Non-Proprietary Stormwater Treatment Measures, 2004, Fletcher et al

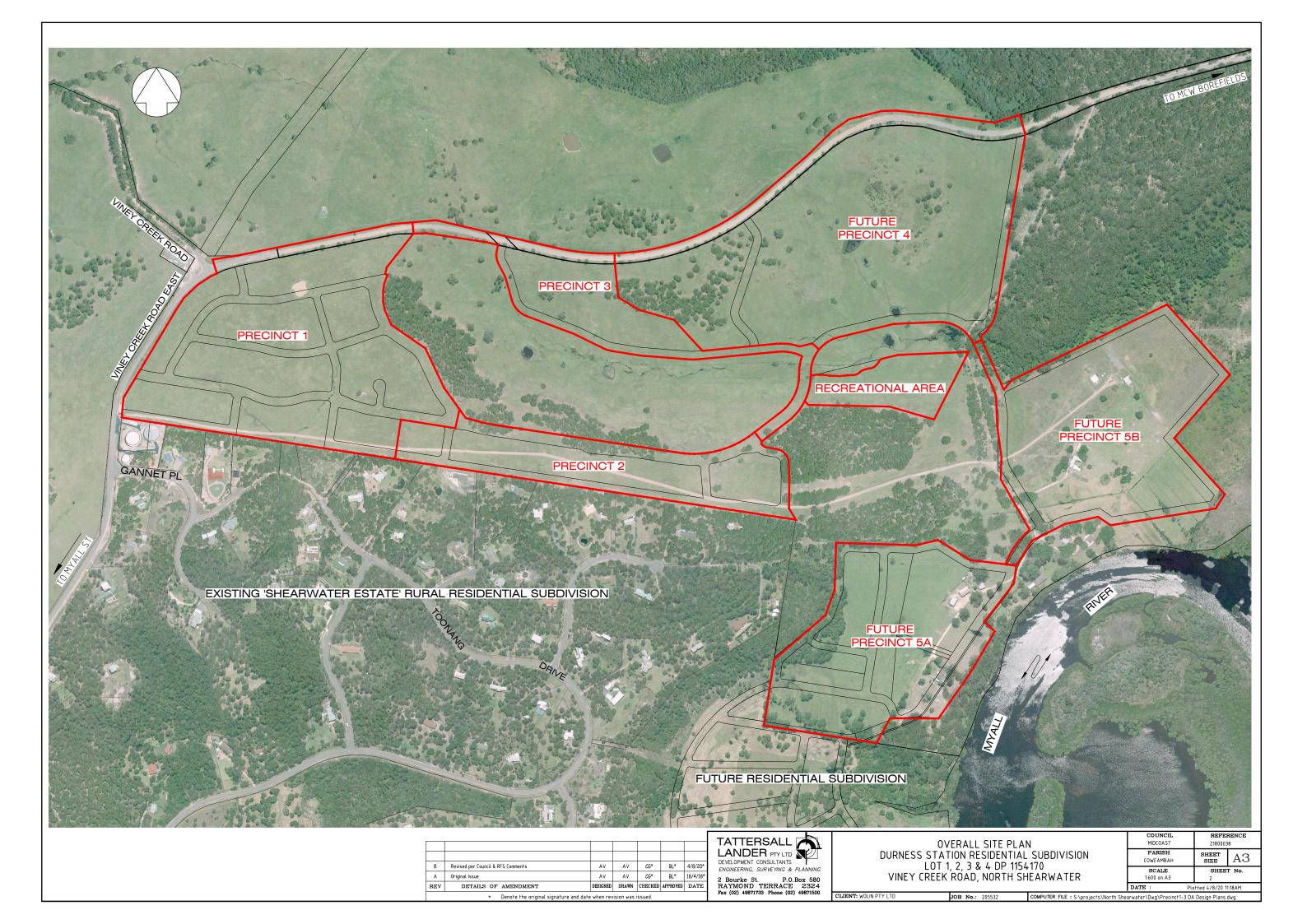
WSUD Engineering Procedures: Stormwater, 2005, Melbourne Water

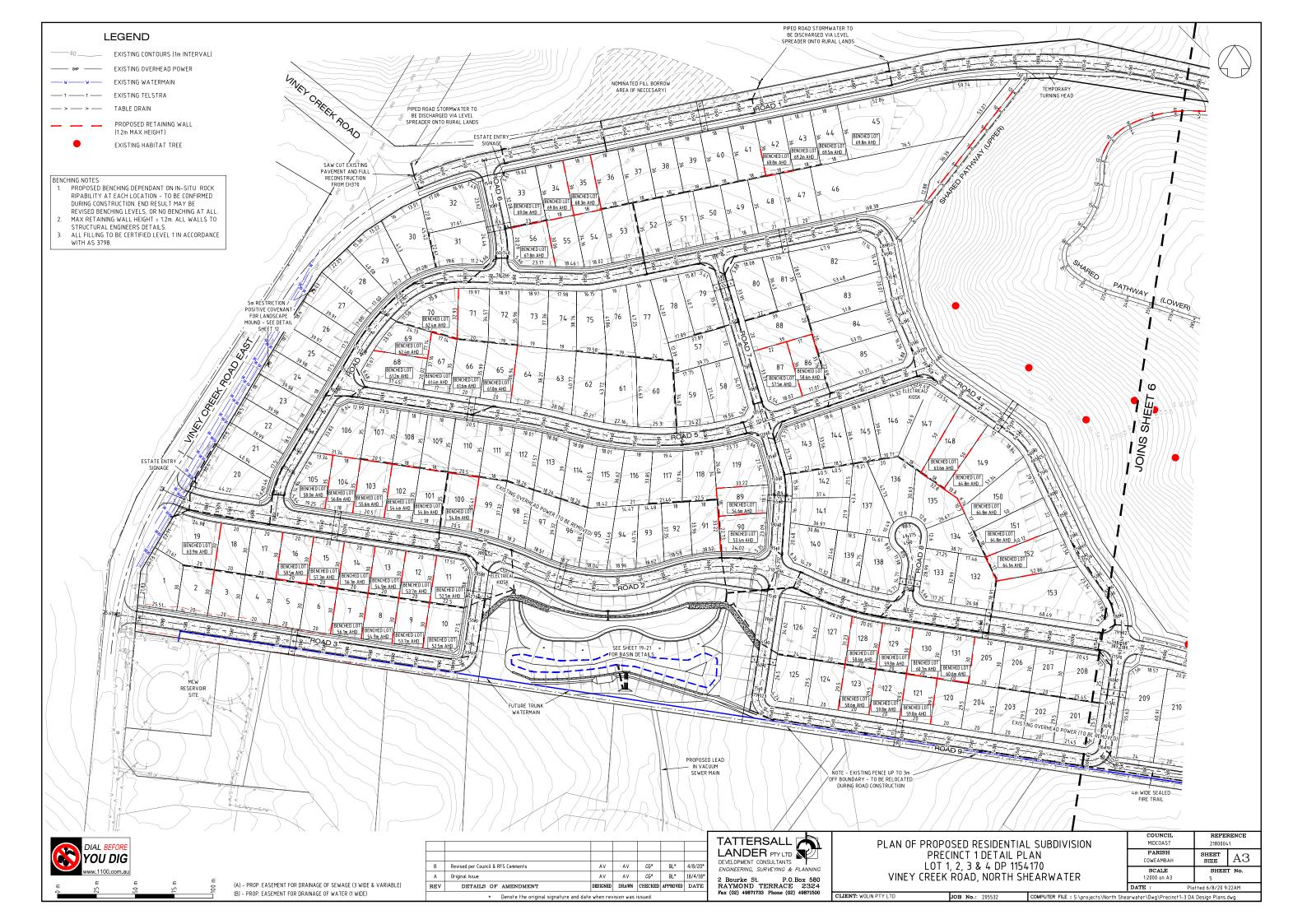
APPENDIX A: PROPOSED LAYOUT & DETAIL PLANS

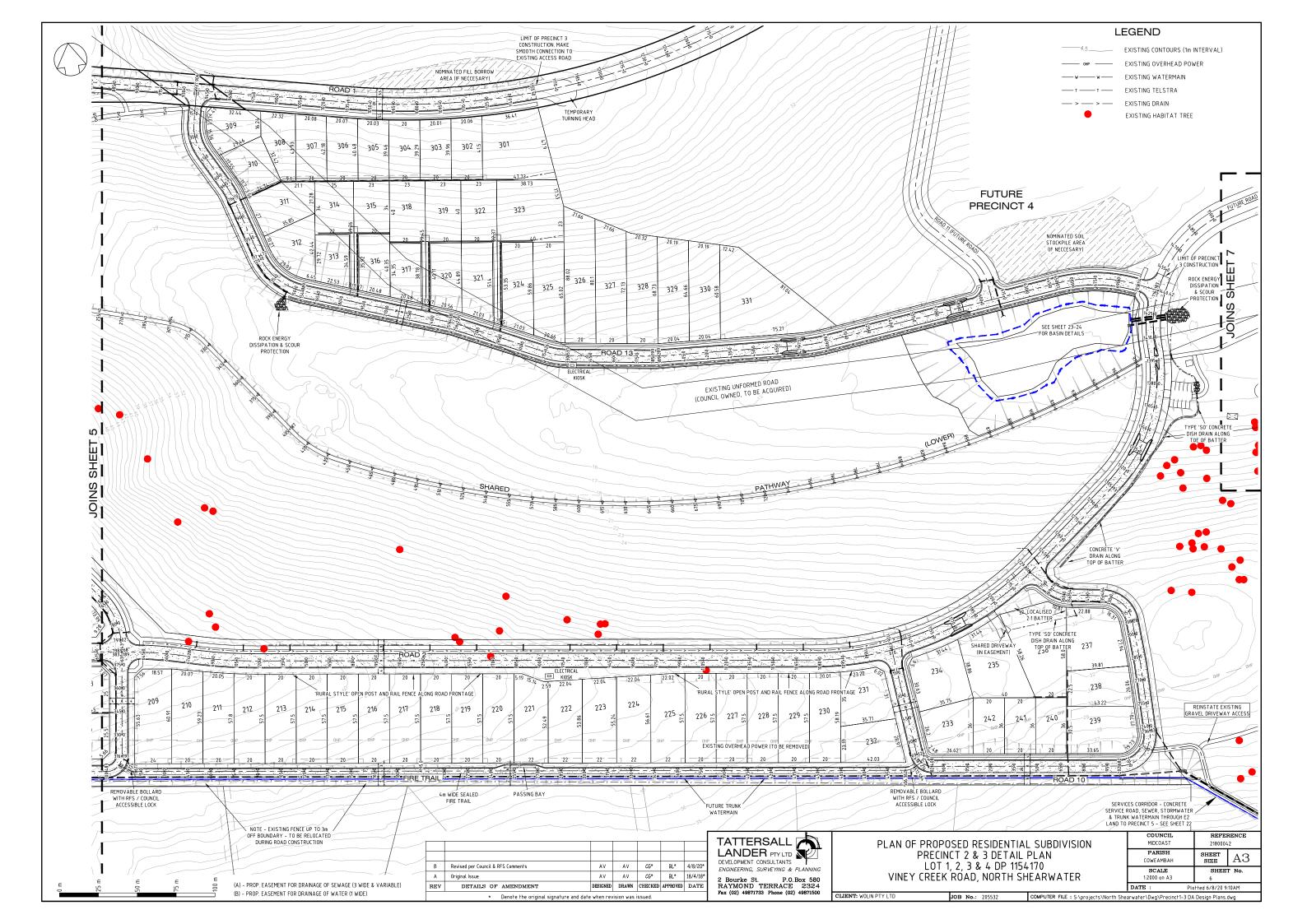
PROPOSED RESIDENTIAL SUBDIVISION 'DURNESS STATION', LOT 1, 2, 3 & 4 DP 1154170 VINEY CREEK ROAD, NORTH SHEARWATER

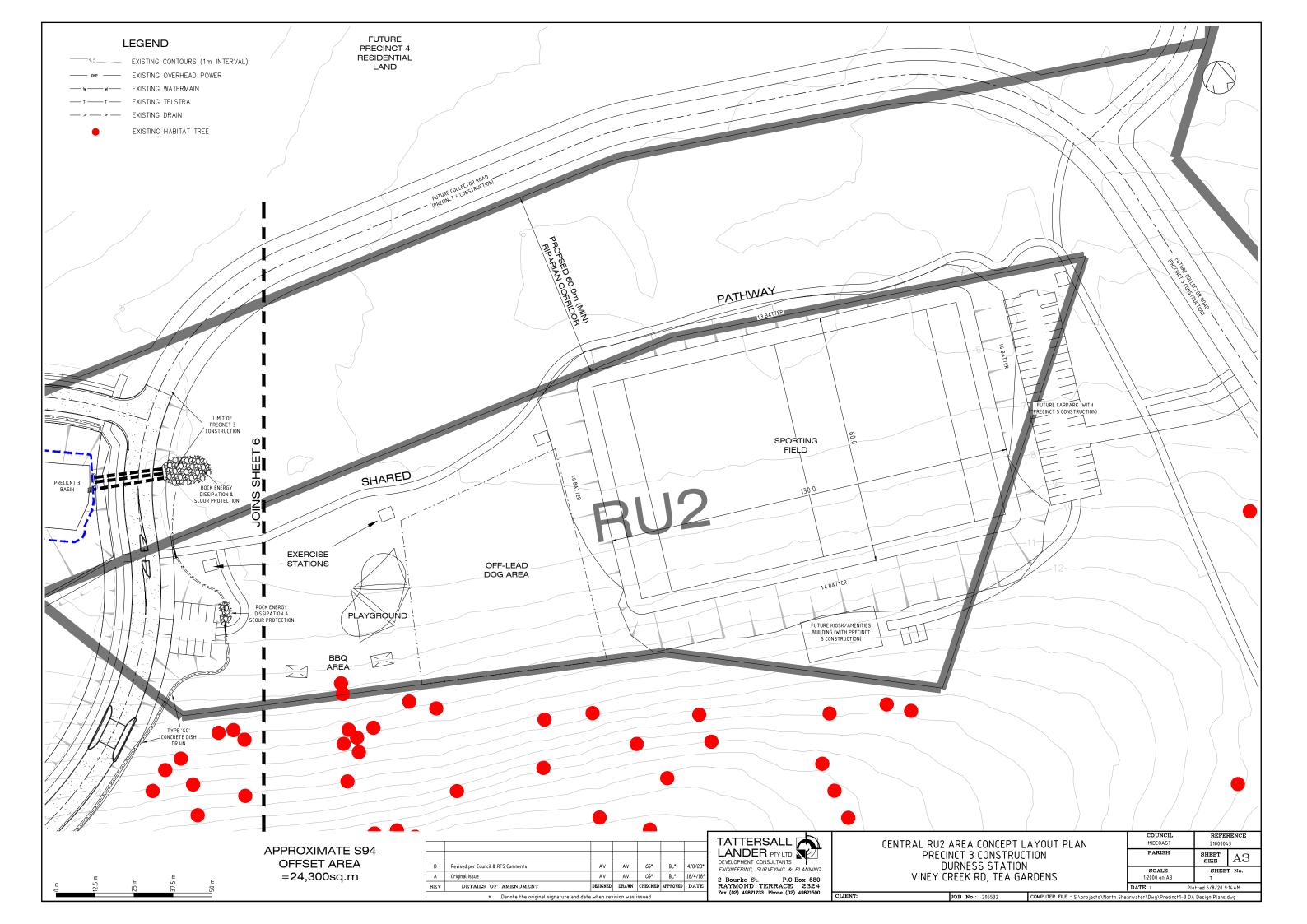
DEVELOPMENT APPLICATION, ROAD & DRAINAGE DESIGN PLANS

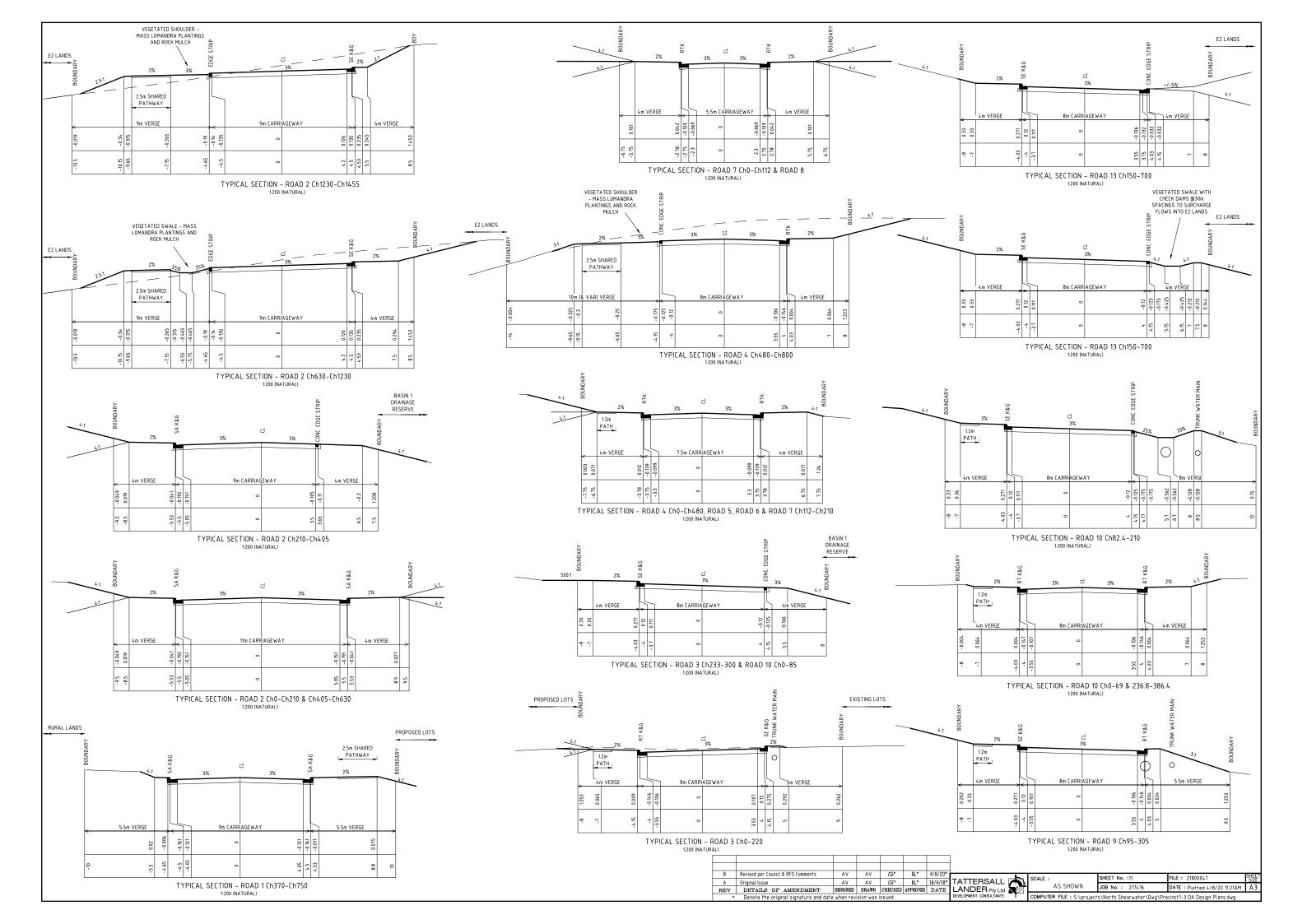
Sheet File Number Description 1 21800037 COVER SHEET, LOCALITY SKETCH & SCHEDULE OF DRAWINGS 21800038 OVERALL SITE PLAN 21800039 PRECINCT 1 SUBDIVISION LAYOUT 21800040 PRECINCT 2 & 3 SUBDIVISION LAYOUT 21800041 PRECINCT 1 DETAIL PLAN 21800043 RU2 RECREATIONAL AREA DETAIL PLAN 21800044 PRECINCT 1 TREE REMOVAL PLAN 21800045 PRECINCT 2 & 3 TREE REMOVAL PLAN 21800046 PRECINCT 1 PRECINCT RELEASE PLAN 21800047 DETAILS PLAN - ROAD TYPICALS 21800048 DETAILS PLAN - SERVICES ALLOCATIONS & VINEY CREEK RD LANDSCAPE BUFFER 21800049 ROAD LONGITUDINAL SECTIONS 21800050 ROAD LONGITUDINAL SECTIONS 21800051 ROAD LONGITUDINAL SECTIONS 21800052 ROAD LONGITUDINAL SECTIONS 21800053 ROAD LONGITUDINAL SECTIONS 21800054 RIPARIAN CORRIDOR PATHWAY & STG 2-5 SERVICE ROAD LONGITUDINAL SECTIONS 21800056 PRECINCT 1 BASIN SECTIONS 21800057 PRECINCT 1 BASIN DETAILS 21800058 PRECINCT 2 BASIN PLAN 21800059 PRECINCT 3 BASIN PLAN 21800060 PRECINCT 3 BASIN SECTIONS 21800061 CATCHMENT PLAN 21800062 PRECINCT 1 CUT-FILL PLAN 21800063 PRECINCT 2 & 3 CUT-FILL PLAN 21800064 OVERALL SHARED PATHWAYS PLAN 21800065 PRECINCT 1 CONCEPT SOIL & WATER MANAGEMENT PLAN 21800066 PRECINCT 2 & 3 CONCEPT SOIL & WATER MANAGEMENT PLAN

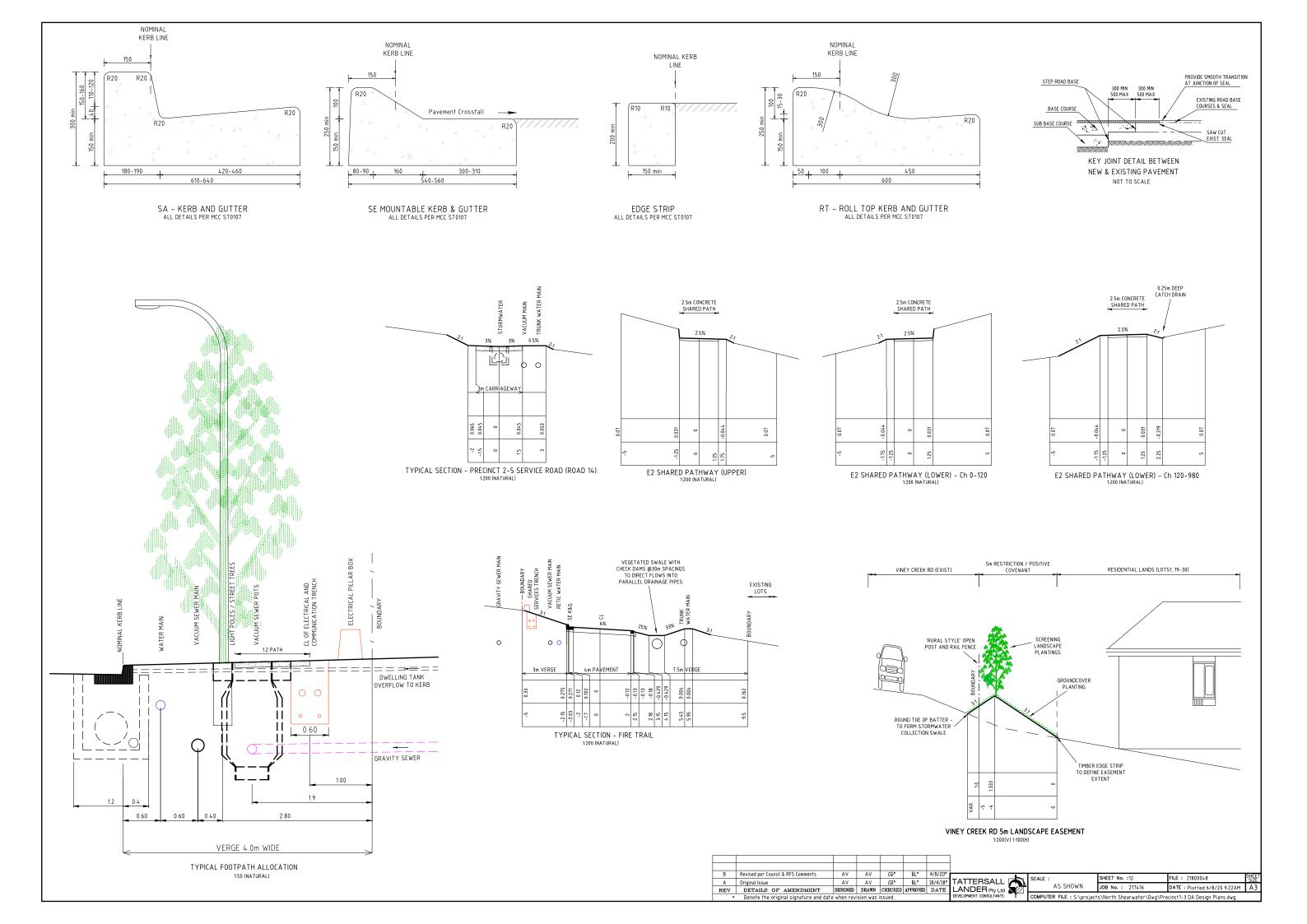

Schedule of Drawings

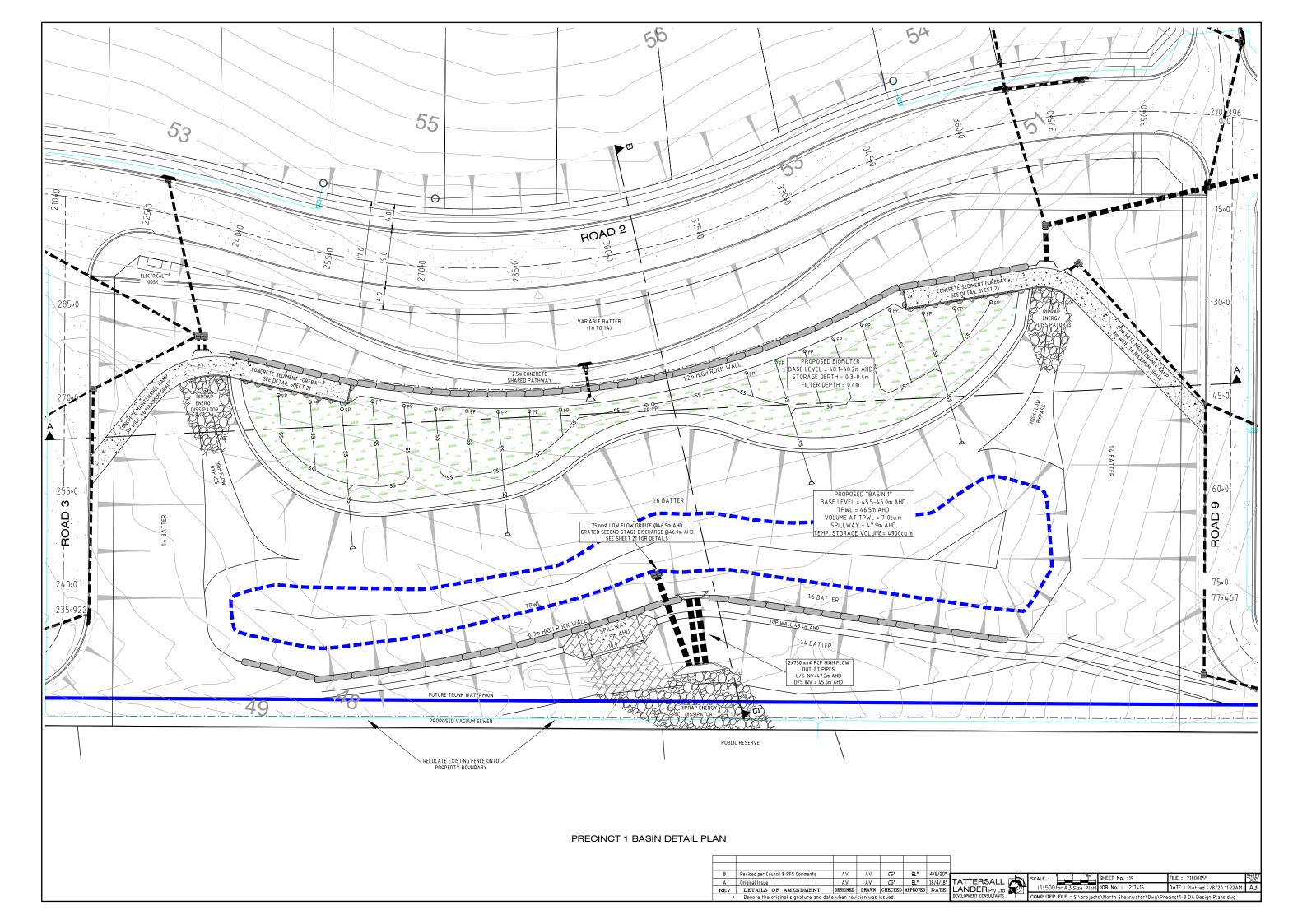

Designed By

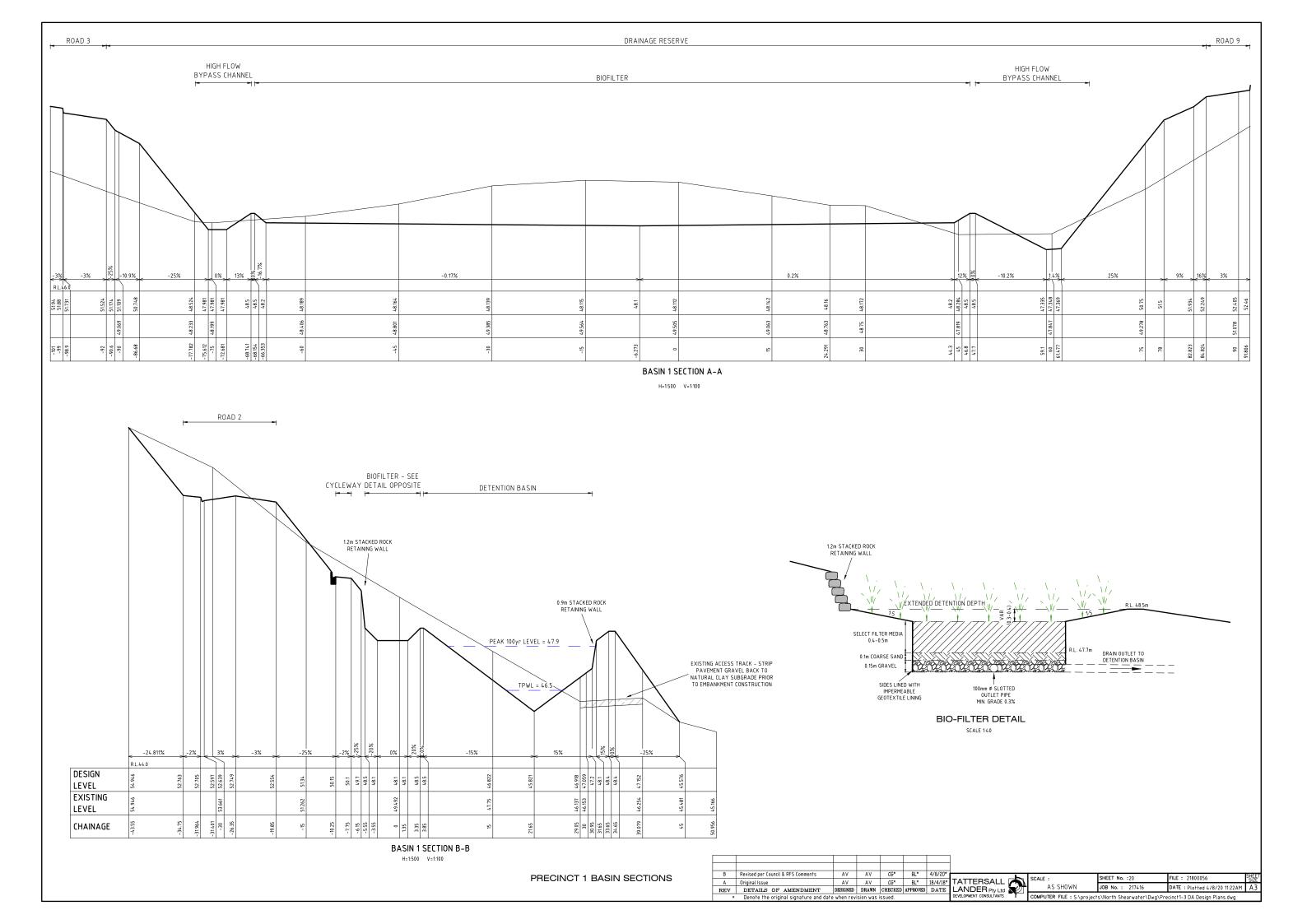

21800067 CONCEPT SOIL & WATER MANAGEMENT NOTES
21800068 OVERALL CONCEPT ELECTRICAL SERVICING PLAN

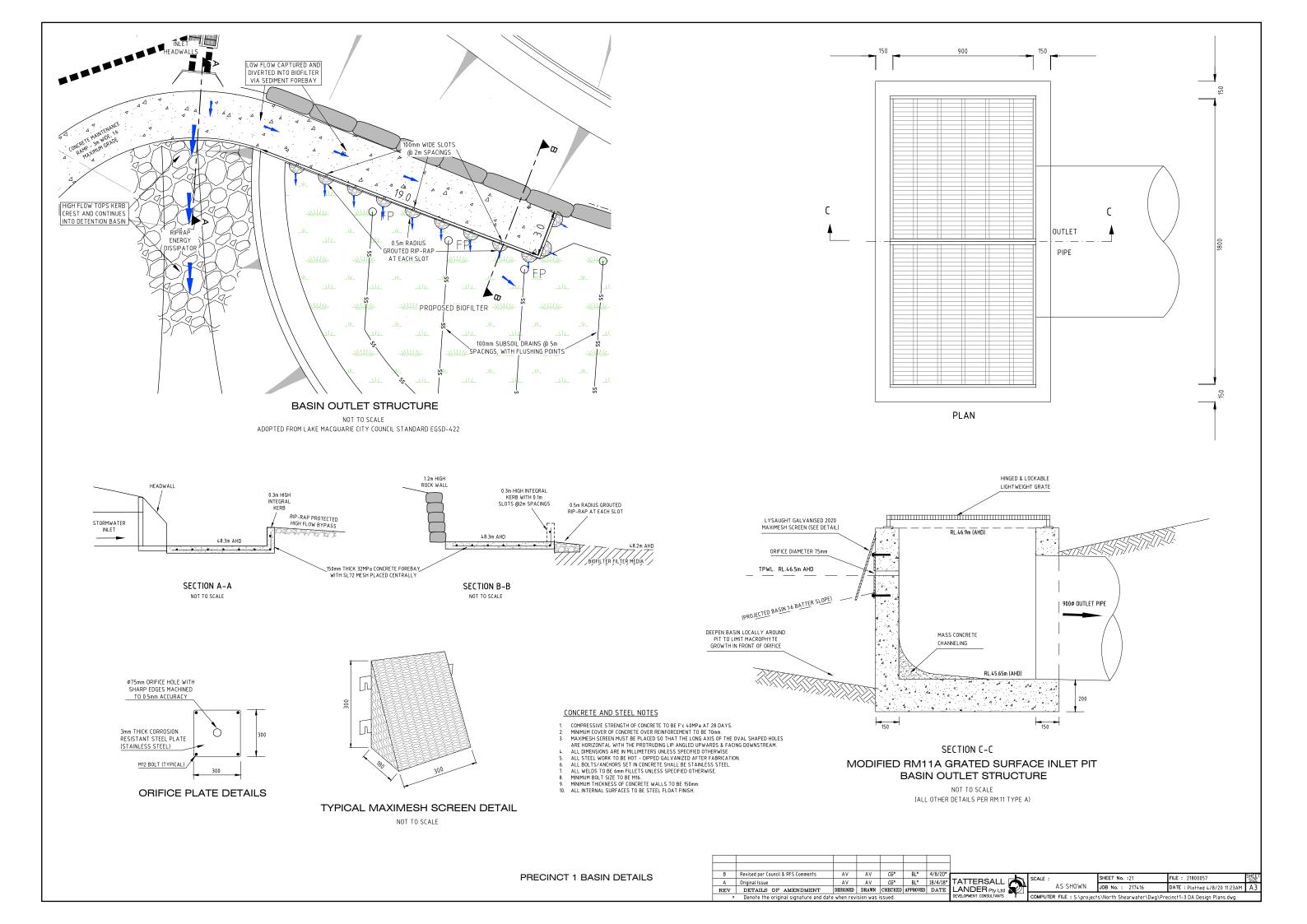

TATTERSALL LANDER PTY LTD DEVELOPMENT CONSULTANTS IN ENGINEERING, SURVEYING & PLANNING PO Box 580 RAYMOND TERRACE Phone (02) 4987 1500

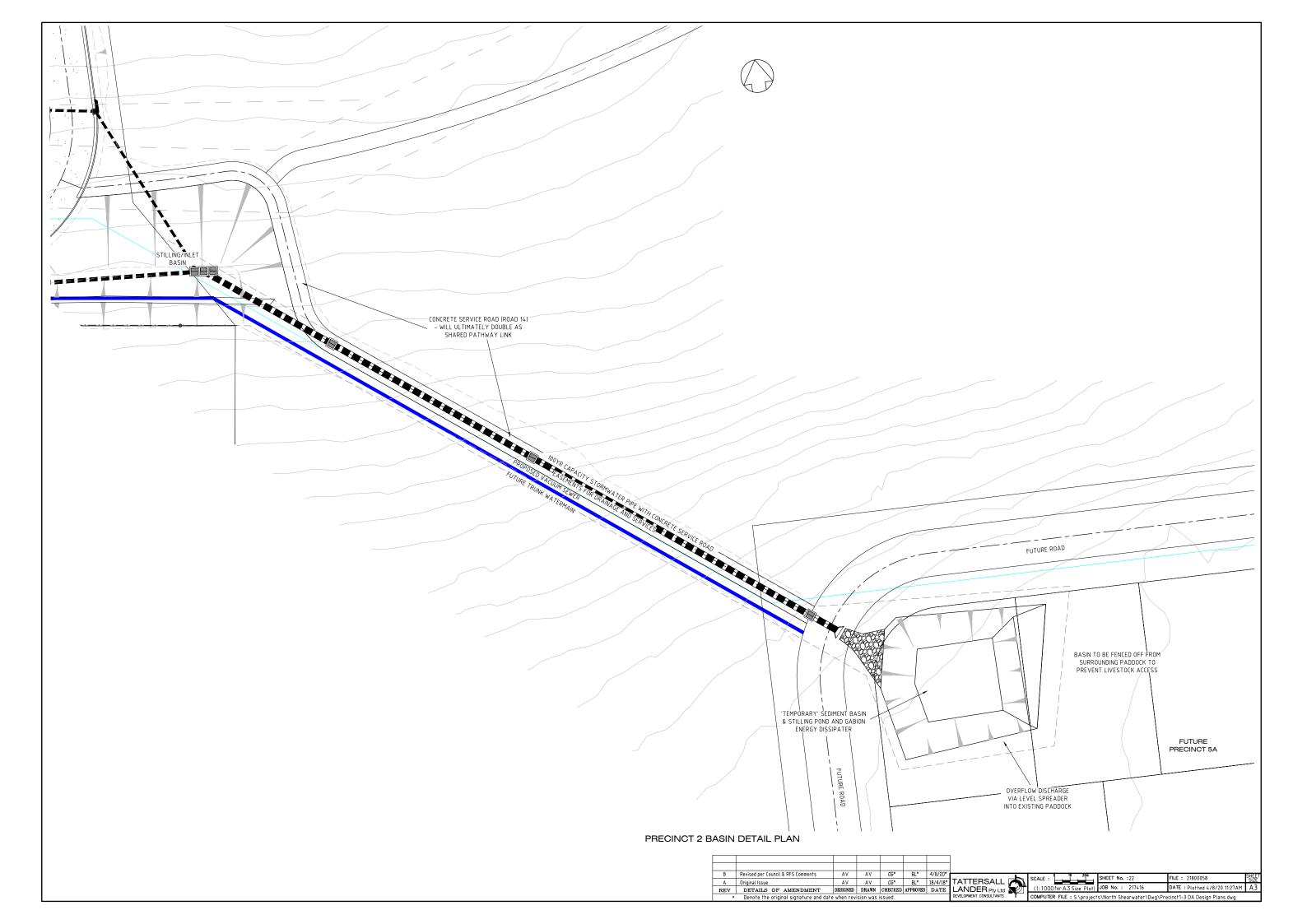


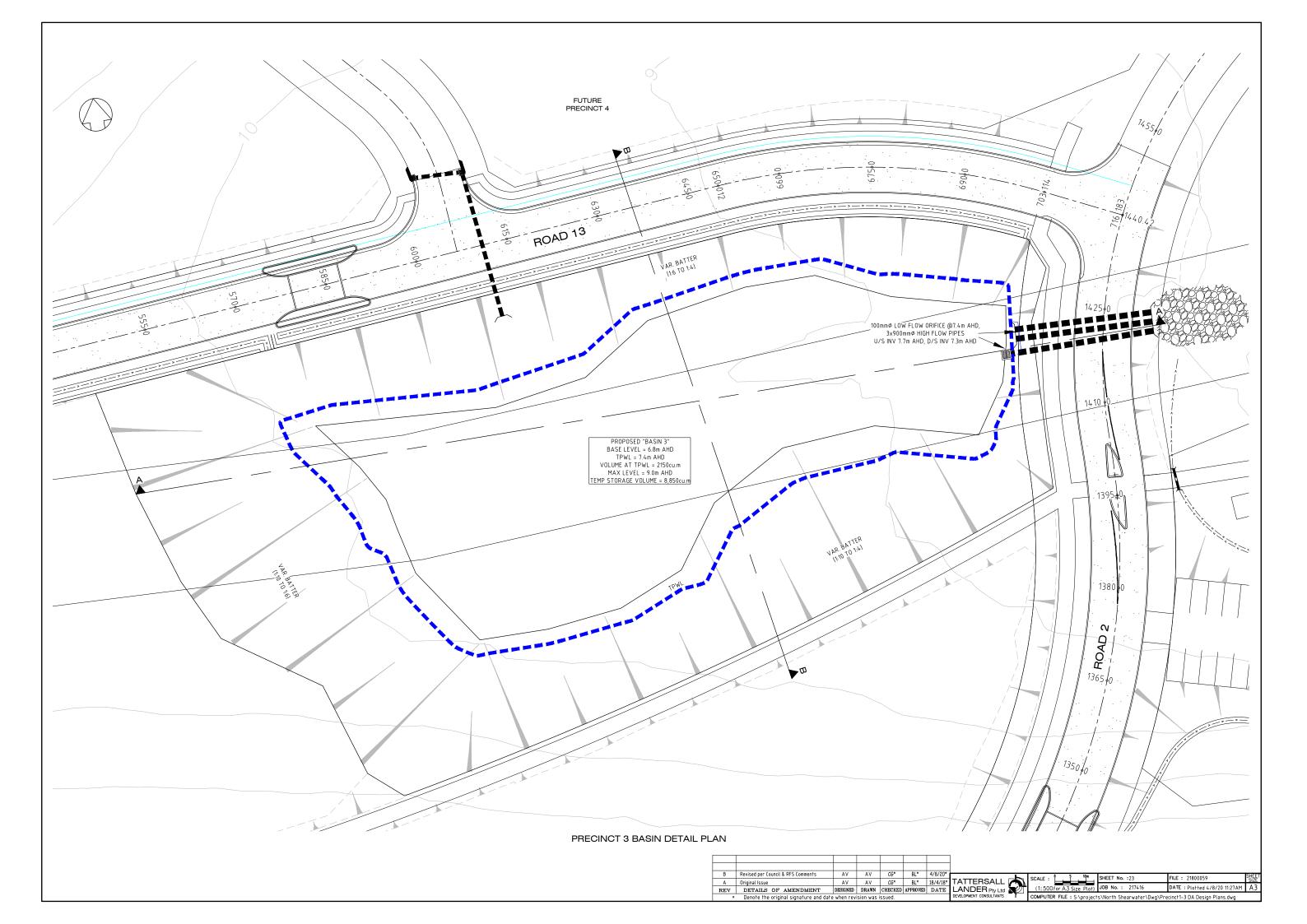


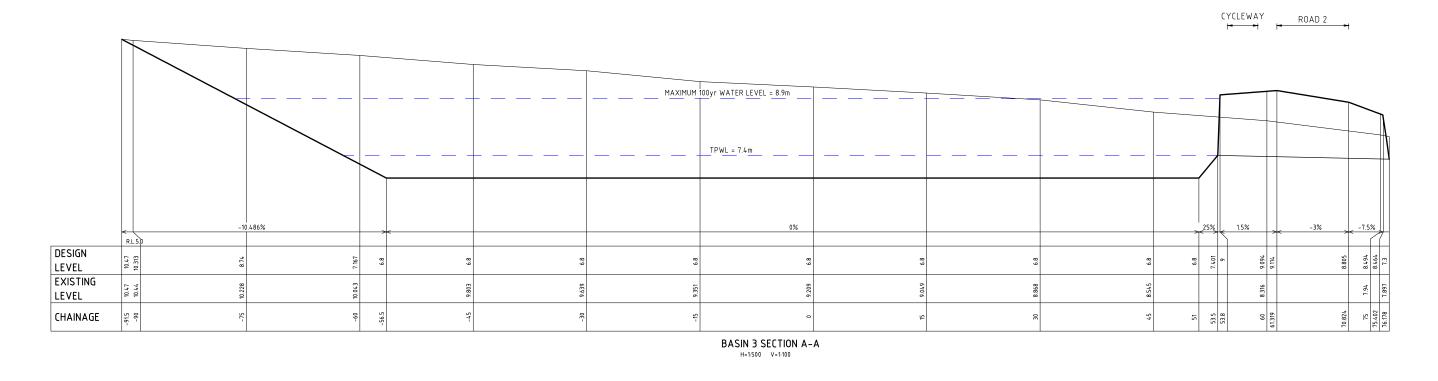


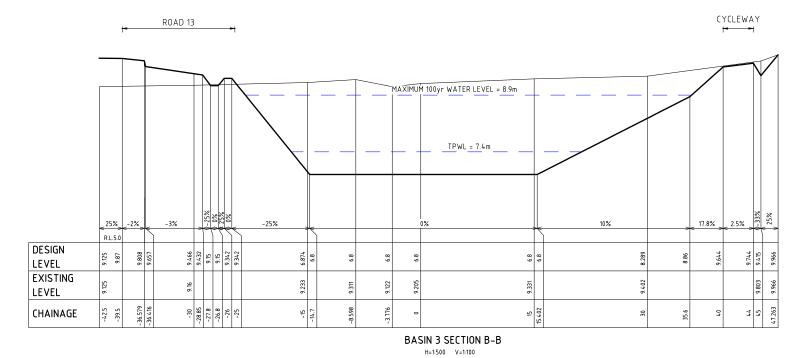


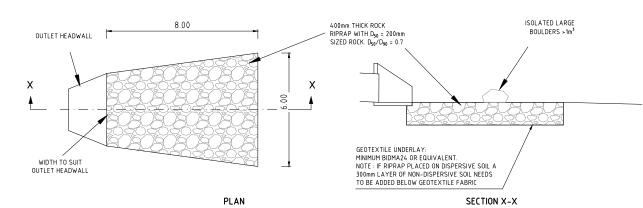


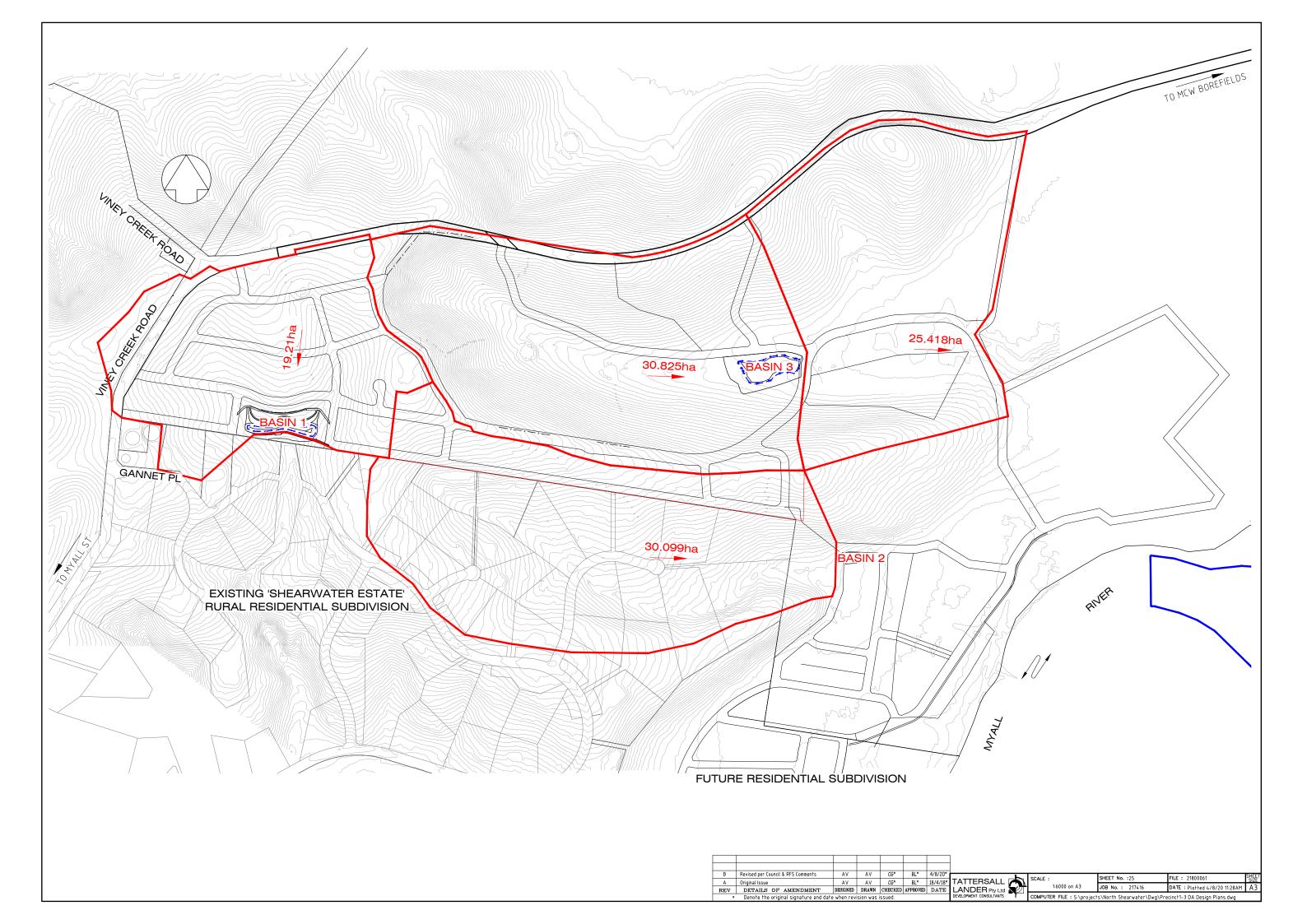






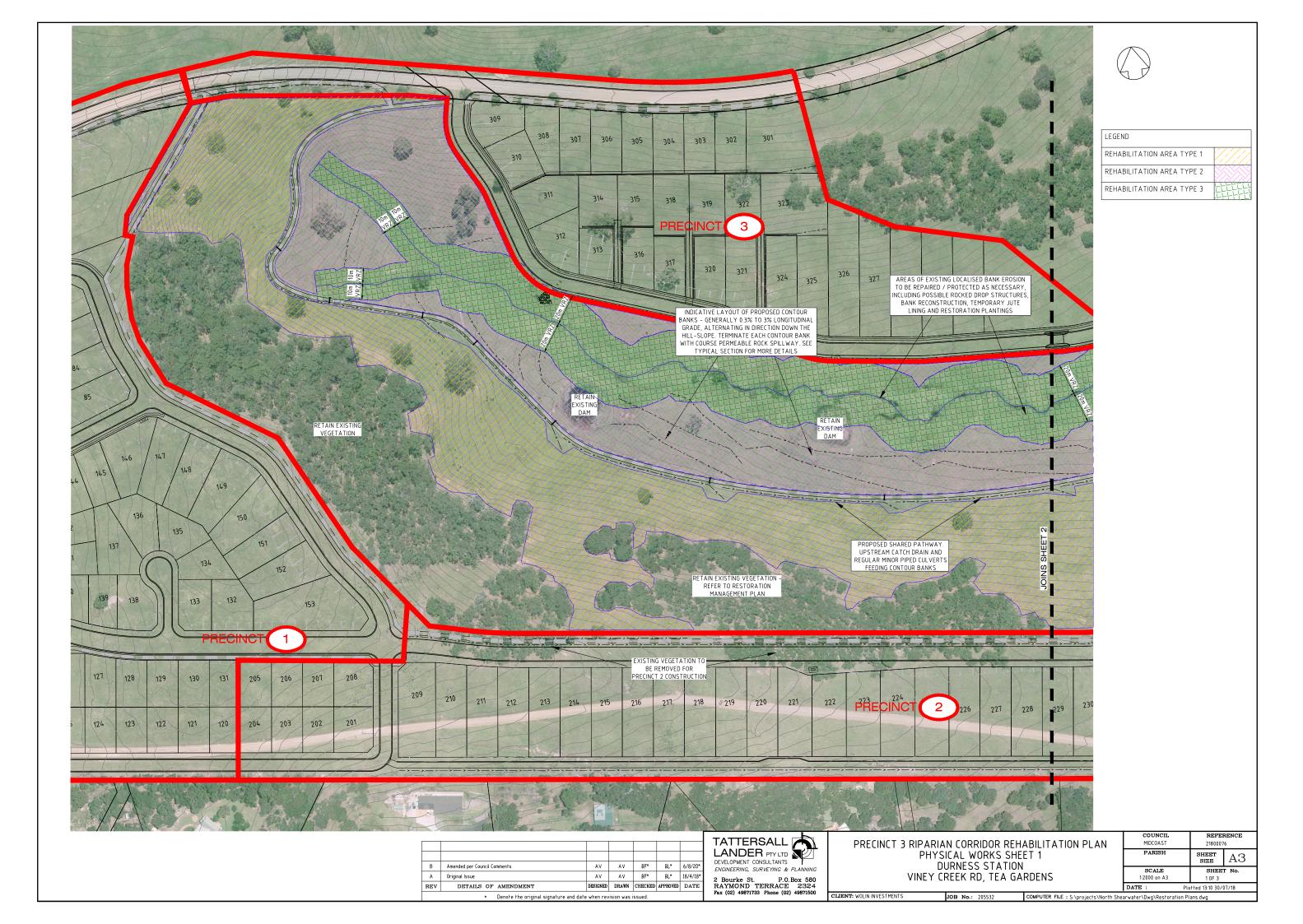


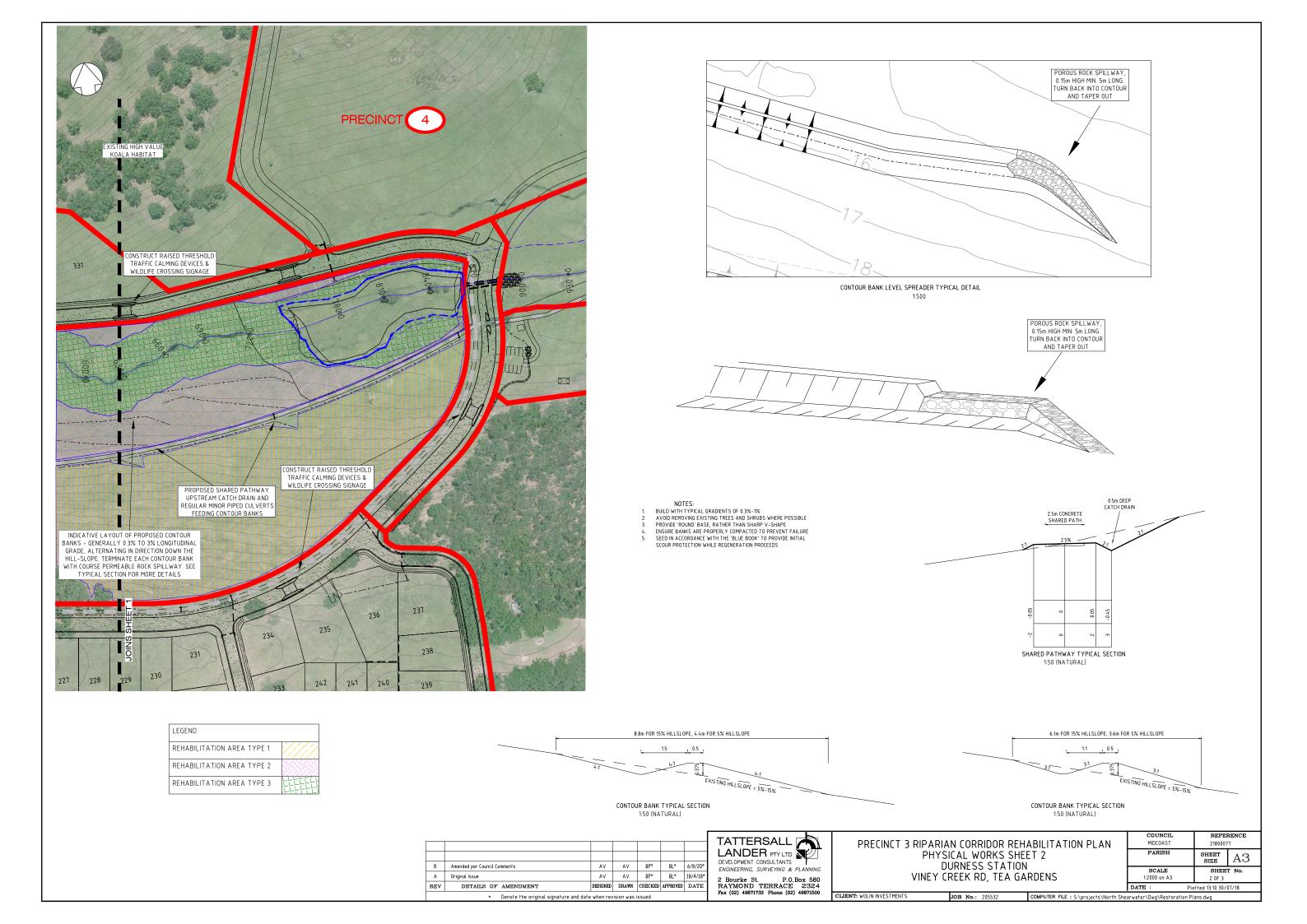




RIP RAP ENERGY DISSIPATION STRUCTURES NOT TO SCALE

PRECINCT 3 BASIN DETAILS


В	Revised per Council & RFS Comments	AV	ΑV	CG*	BL*	4/8/20*	
Α	Original Issue	AV	AV	CG*	BL*		TATTERSALL
REV	DETAILS OF AMENDMENT	DESIGNED	DRAWN	CHECKED	APPROVED	DATE	LANDER Pty Ltd
 Denote the original signature and date when r 		when rev	ision was i	ssued.			DEVELOPMENT CONSULTANTS


Ţ	SCALE :	SHEET No. :24	FILE: 21800060	SHEET SIZE
	AS SHOWN	JOB No. : 217416	DATE: Plotted 4/8/20 11:27AM	Α3
-4-	COMPUTER FILE : S:\project	s\North Shearwater\Dwg\Pre	cinct1–3 DA Design Plans.dwg	

APPENDIX B: PROPOSED E2 LANDS REHABILITATION PLANS

LEGEND	
REHABILITATION AREA TYPE 1	
REHABILITATION AREA TYPE 2	
REHABILITATION AREA TYPE 3	

DI ANTING COUEDIUS ADEA TYDE 1 5 301		
PLANTING SCHEDULE AREA TYPE 1 – 5.38ha		
UPPER STRATUM		
SPECIES	DENSITY/ha	
Corymbia maculata (Spotted Gum)	30	
Eucalyptus siderophloia (Grey Ironbark)	50	
Eucalyptus canaliculata (Grey Gum)	50	
Eucalyptus tereticornis (Forest Red Gum)	60	
Corymbia gummifera (Red Bloodwood)	25	
Stratum Subtotal	215	
MIDDLE STRATUM		
SPECIES	DENSITY/ha	
Acacai myrtifolia (Myrtle Wattle)	20	
Acacia ulicifolia (Prickly Moses)	20	
Pultenaea retusa (Notched Bush-pea)	25	
Pultenaea villosa (Hairy Bush-pea)	35	
Xanthorrhoea macronema	20	
Macrozamia communis (Burrawang)	10	
Hibbertia diffusa (Wedge Guinea Flower)	20	
Hibbertia linearis	30	
Leucopogon juniperinus (Prickly Beard-heath)	30	
Stratum Subtotal	210	
PROSTRATE (LOWER) STRATUM		
SPECIES	DENSITY/ha	
Dianella caerulea var. producta	100	
Imperata cylindrica (Blady Grass)	100	
Lomandra filiformis (Wattle Mat-rush)	80	
Lomandra longifolia (Spiney-headed Mat-rush)	20	
Lomandra multiflora (Many-flowered Mat-rush)	40	
Stratum Subtotal	340	
Total density =	765	
TOTAL PLANTINGS = 4115		

UPPER STRATUM	
SPECIES	DENSITY/
Corymbia maculata (Spotted Gum)	15
Eucalyptus siderophloia (Grey Ironbark)	30
Eucalyptus canaliculata (Grey Gum)	20
Eucalyptus tereticornis (Forest Red Gum)	40
Eucalyptus robusta (Swamp Mahogany)	40
Eucalyptus acmenoides (White Mahogany)	20
Corymbia gummifera (Red Bloodwood)	25
Angophora costata (Sydney Reg-gum	20
Stratum Subtotal	210
MIDDLE STRATUM	
SPECIES	DENSITY/
Acacai myrtifolia (Myrtle Wattle)	20
Acacia ulicifolia (Prickly Moses)	25
Pultenaea retusa (Notched Bush-pea)	30
Pultenaea villosa (Hairy Bush-pea)	20
Glochidion ferdinandi (Cheese tree)	20
Leucopogon juniperinus (Prickly Beard-heath)	20
Macrozamia communis (Burrawang)	10
Hibbertia diffusa (Wedge Guinea Flower)	10
Hibbertia linearis	30
Callistemon salignus (willow Bottlebrush)	20
Callistemon rigidus (Stiff Bottlebrush)	20
Stratum Subtotal	225
PROSTRATE (LOWER) STRATUM	
SPECIES	DENSITY/
Dianella caerulea var. producta	50
Imperata cylindrica (Blady Grass)	40
Lomandra filiformis (Wattle Mat-rush)	80
Lomandra longifolia (Spiney-headed Mat-rush)	30
Lomandra multiflora (Many-flowered Mat-rush)	30
Poa labillardierei (Tussock Grass)	30
Stratum Subtotal	260
Total density =	695

PLANTING SCHEDULE AREA TYPE 3 – 2.83ha	
UPPER STRATUM	
SPECIES	DENSITY/ha
${\it Archontophoenix\ cunninghamiana\ (Bangalow\ Palm)}$	15
Eucalyptus siderophloia (Grey Ironbark)	30
Eucalyptus canaliculata (Grey Gum)	20
Eucalyptus microcorys (Tallowwood)	40
Eucalyptus robusta (Swamp Mahogany)	40
Eucalyptus acmenoides (White Mahogany)	20
Corymbia gummifera (Red Bloodwood)	25
Angophora costata (Sydney Reg-gum)	20
STRATUM SUBTOTAL	210
MIDDLE STRATUM	
SPECIES	DENSITY/h
Acacai myrtifolia (Myrtle Wattle)	20
Acacia ulicifolia (Prickly Moses)	25
Pultenaea retusa (Notched Bush-pea)	30
Glochidion ferdinandi (Cheese tree)	20
Macrozamia communis (Burrawang)	20
Hibbertia linearis	30
Callistemon salignus (willow Bottlebrush)	20
Callistemon rigidus (Stiff Bottlebrush)	20
Stratum Subtotal	185
PROSTRATE (LOWER) STRATUM	
SPECIES	DENSITY/h
Gahnia sieberiana (Red-fruit saw sedge)	50
Lomandra longifolia (Spiney-headed Mat-rush)	30
Lomandra multiflora (Many-flowered Mat-rush)	30
Poa labillardierei (Tussock Grass)	30
Stratum Subtotal	140
Total density =	535
TOTAL PLANTINGS = 1520	

NOTES

- PLANTS MAY BE TUBE STOCK OR LARGER, DEPENDING UPON AVAILABILITY.

В	Amended per Council Comments	ΑV	AV	BF*	BL*	6/8/20*
Α	Original Issue	AV	ΑV	BF*	BL*	18/4/18*
REV	DETAILS OF AMENDMENT	DESIGNED	DRAWN	CHECKED	APPROVED	DATE
	* Denote the original signature and date	when rev	ision was i	ssued.		

TATTERSALL
LANDER PTYLTD
DEVELOPMENT CONSULTANTS
ENGINEERING, SURVEYING & PLANNING
2 BOURKE St. P.O.Box 580
RAYMOND TERRACE 2324
Fax (02) 49871733 Phone (02) 49871500

PLANTING SCHEDULE

VINEY CREEK RD, TEA GARDENS

COUNCIL MIDCOAST	REFERENCE 21800078	
PARISH	sheet A3	
SCALE 1:2000 on A3	SHEE* 3 OF 3	T No.
DATE: PI	otted 13:10 30/	07/18

CLIENT: WOLIN INVESTMENTS JOB No.: 205532 COMPUTER FILE: S:\projects\North Shearwater\Dwg\Restoration Plans.dwg

APPENDIX C: BIOFILTER MAINTENANCE TASKS

A. Filter Media Tasks

Sediment	Remove sediment build up from the surface of bioretention swales
Deposition	Frequency – 3 monthly after rain
Holes or	Infill any holes in the filter media. Check for erosion or scour and repair,
scour	provide energy dissipation (rocks & pebbles etc) if necessary
	Frequency – 3 monthly after rain
Filter media	Inspect for the accumulation of an impermeable layer (such as oily or clayey
surface	sediment) that may have formed on the surface of the filter media. A
porosity	symptom may be that water remains ponded in the swale for more than a
	few hours after a rain event. Repair minor accumulations by raking away
	any mulch on the surface and scarifying the surface of the filter media
	between plants
	Frequency – 3 monthly after rain
Litter Control	Check for litter (including organic litter) in and around bioretention swales.
	Remove both organic and anthropogenic litter to ensure flow paths and
	infiltration through the filter media are not hindered.
	Frequency – 3 monthly after rain

B. Horticultural Tasks

Pests and	Assess plants for disease, pest infection, stunted growth or senescent
Diseases	plants. Treat or replace as necessary. Reduced plant density reduces
	pollutant removal and infiltration performance
	Frequency – 3 monthly after rain
Maintain	Inspect condition of all plants. Replace and dead plants immediately to
original plant	maintain a minimum density of 4 plants per square metre
densities	Frequency – 3 monthly after rain
Drought /	In periods of prolonged drought or extreme heat, the condition of plantings
Extreme Heat	and site lawn coverage should to be monitored for signs of stress. Watering
	may be required to ensure plant survival
	Frequency – As required

Weeds	It is important to identify the presence of any rapidly spreading weeds as
	they occur. The presence of such weeds can reduce dominate species
	distributions and diminish aesthetics. Weed species can also compromise
	the systems long term performance. Inspect for and manually remove weed
	species. Application of herbicide should be limited to a wand or restrictive
	spot spraying due to the fact that the swales are directly connected to the
	stormwater system
	Frequency – 3 monthly after rain
Grassed	Grassed buffer strips treat runoff as it flows off the roads, before it enters
buffer strip	the bioretention swales. Maintaining a healthy grass cover is important, but
	the use of fertilisers should be kept to a minimum given their proximity to
	the drainage network
Lawn	Healthy site grass coverage is important for pollutant treatment, topsoil
Fertiliser	erosion control and aesthetics. However, if not correctly used, fertilisers can
	damage the downstream environment. A low Phosphorus fertiliser with
	restricted leaching properties such as a Fused Calcium Magnesium
	Phosphate or TNN Industries 'Formula 1', or equivalent is ideal. The
	application of fertiliser should be restricted to a maximum of twice a year

C. Drainage Tasks

Perforated	Ensure that perforated pipes are not blocked to prevent filter media and
Pipe	plants from becoming waterlogged. A small steady clear flow of water may
	be observed discharging from the perforated pipe at its connection into the
	downstream pit some hours after rainfall. Note that smaller rainfall events
	after dry weather may be completely absorbed by the filter media and not
	result in flow. Remote camera (eg CCTV) inspection of pipelines for
	blockage and structural integrity could be useful. Flushing of lines from the
	flushing points may be required.
	Frequency – 6 monthly after rain
High flow	Ensure inflow areas and grates over pits are clear of litter and debris and in
inlet pits,	good and safe condition. A blocked grate would cause nuisance flooding of
overflow pits	adjoining areas. Inspect for dislodged or damaged pit covers and ensure
and other	general structural integrity. Remove sediment from pits and entry sites
stormwater	(likely to be an irregular occurrence in mature catchment).
junction pits	Frequency – monthly and occasionally after rain